
Re-implementing and Extending a Hybrid SAT–IP Approach
to Maximum Satisfiability

Paul Saikko

M. Sc. Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, November 18, 2015

Faculty of Science Department of Computer Science

Paul Saikko

Re-implementing and Extending a Hybrid SAT–IP Approach to Maximum Satisfiability

Computer Science

M. Sc. Thesis November 18, 2015 69

Discrete Optimization, Maximum Satisfiability, Bayesian Network Structure Learning

Real-world optimization problems, such as those found in logistics and bioinformatics, are
often NP-hard. Maximum satisfiability (MaxSAT) provides a framework within which many
such problems can be efficiently represented. MaxHS is a recent exact algorithm for MaxSAT.
It is a hybrid approach that uses a SAT solver to compute unsatisfiable cores and an integer
programming (IP) solver to compute minimum-cost hitting sets for the found cores. This thesis
analyzes and extends the MaxHS algorithm. To enable this, the algorithm is re-implemented
from scratch using the C++ programming language. The resulting MaxSAT solver LMHS
recently gained top positions at an international evaluation of MaxSAT solvers.

This work looks into various aspects of the MaxHS algorithm and its applications.
The impact of different IP solvers on the MaxHS algorithm and the behavior induced by
different strategies of postponing IP solver calls is examined. New methods of enhancing the
computation of unsatisfiable cores in MaxHS are examined. Fast core extraction through
parallelization by partitioning soft clauses is explored. A modification of the final conflict
analysis procedure of a SAT solver is used to generate additional cores without additional
SAT solver invocations. The use of additional constraint propagation procedures in the SAT
solver used by MaxHS is investigated. As a case study, acyclicity constraint propagation is
implemented and its effectiveness for bounded treewidth Bayesian network structure learning
using MaxSAT is evaluated. The extension of MaxHS to the labeled MaxSAT framework,
which allows for more efficient use of preprocessing techniques and group MaxSAT encodings
in MaxHS, is discussed. The re-implementation of the MaxHS algorithm, LMHS, also enables
incrementality in efficiently adding constraints to a MaxSAT instance during the solving
process. As a case study, this incrementality is used in solving subproblems with MaxSAT
within GOBNILP, a tool for finding optimal Bayesian network structures.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Preliminaries 3
2.1 SAT . 3
2.2 SAT solvers . 4
2.3 Maximum satisfiability . 6

2.3.1 Unsatisfiable cores . 8
2.3.2 MaxSAT solvers . 9

2.4 Integer programming . 11

3 The MaxHS algorithm 12
3.1 Hitting sets . 13
3.2 Solving MaxSAT with cores and hitting sets 14
3.3 Assumption variables in MaxHS 17
3.4 Using non-optimal hitting sets 19
3.5 Presolving . 20

3.5.1 Disjoint phase . 21
3.5.2 Assumption variable equivalences 22

3.6 Core minimization . 22
3.6.1 Re-refuting cores . 24
3.6.2 Finding minimal cores 24

4 Re-implementing MaxHS 25
4.1 The LMHS Solver . 25
4.2 Evaluating non-optimal hitting set strategies 26
4.3 Impact of IP and SAT solvers 28
4.4 Solver comparison . 33

5 Extensions 34
5.1 Fast core extraction through CDCL conflict analysis 34

5.1.1 Experiments . 37
5.2 Parallelizing MaxHS . 39

5.2.1 Partitioning . 39
5.2.2 Experiments . 41

5.3 External propagators . 45
5.3.1 Acyclicity constraint propagation 46
5.3.2 Experiments . 47

5.4 Reusing assumption variables 50
5.5 Experiments . 50
5.6 Incremental solving . 51

5.6.1 Model enumeration . 52
5.6.2 LMHS API . 53

ii

6 Applying incremental MaxSAT 53
6.1 Learning optimal Bayesian network structures 54
6.2 GOBNILP . 55
6.3 Solving Sub-IPs with MaxSAT 57
6.4 Experiments . 59

7 Conclusion 61

References 62

iii

1 Introduction
Computationally difficult decision and optimization problems have important
real-world uses. For example, the ability to solve problems in hardware
and software verification [103, 71] is important for applications such as
ensuring the safety of complex, critical systems such as operating system
components and modern airplanes. Even more challenging are optimization
problems which require us to find, with respect to a given objective function,
a maximum or minimum among all possible solutions. Such problems are
commonplace in domains such as planning and scheduling, where the dif-
ference between an optimal solution and a sub-optimal one can at times be
measured millions of dollars. These practical problems include determining
the locations of production and storage facilities [69] and facility layout opti-
mization [9]. Similar problems arise in routing air traffic [12] and scheduling
course times in universities [35] or shifts in workplaces [73].

Constrained optimization is a convenient way of representing and solv-
ing optimization problems. Such problems typically involve optimizing a
relatively simple objective function subject to some set of constraints or
conditions specified using some mathematical constraint modeling language.
This allows for a problem to be built up incrementally and for adding addi-
tional constraints as a problem evolves. Many paradigms for representing
constrained optimization problems exist. For example, integer programming
(IP) [101], answer set programming (ASP) [94, 51], and maximum satisfiabil-
ity (MaxSAT) [74] all provide ways of representing constrained optimization
problems. Each provides a well-defined way of representing constraints.
Efficient ways of encoding problems and conditions in these languages are
of both practical and theoretical interest. Instead of developing a separate
algorithm for every problem domain, algorithms can be developed for these
languages. In short, the declarative approach of encoding a problem as a set
of constraints allows us to develop more general algorithmic solutions which
can be applied to a wide range of problem domains.

Advances in algorithms and solvers for Boolean satisfiability (SAT) have
enabled their practical use in solving more general problems such as maxi-
mum satisfiability, satisfiability modulo theories (SMT) [95, 102], ASP, and
counterexample-guided abstraction refinement (CEGAR) [29]. This thesis
focuses on MaxSAT, an optimization version of SAT. MaxSAT is a relatively
low-level approach to constrained optimization with its simple language
based on conjunctive normal form (CNF) propositional formulas: constraints
in MaxSAT (clauses) are simply disjunctions of binary variables or their
negations. As a constrained optimization paradigm, MaxSAT is interesting
for a number of reasons. Considerable work has been done to develop efficient
SAT encodings of various constraints, which can be utilized for MaxSAT.
New developments in SAT solving are also applicable to MaxSAT since
most MaxSAT solvers solve a sequence of SAT problems. The weighted

1

partial generalization of MaxSAT allows for a wider range of problems to
be conveniently encoded. It allows for some (hard) constraints to be spec-
ified as mandatory and allows weights to be associated with other (soft)
constraints. This gives a natural way of specifying the relative importance
of constraints. MaxSAT (and especially weighted partial MaxSAT) has re-
cently been successfully applied to a number of problems including hardware
debugging [62, 106], data analysis [18, 26], model-based diagnosis [79], and
bioinformatics [100, 19, 53].

MaxSAT algorithms [89, 3, 54, 70, 36, 92, 24, 87] commonly use a SAT
solver as a black box to solve a sequence of SAT problems. Many of these
are so-called core-based algorithms [84]. These use a SAT solver to identify
sets of constraints which cannot be simultaneously satisfied, called cores, and
employ various techniques to optimally account for each one. We focus on
MaxHS [37, 38, 39, 36], a recent MaxSAT algorithm which has been shown
to be very effective for solving instances in some problem categories. MaxHS
can be seen as an instantiation of a general implicit hitting set approach to
optimization [88] for MaxSAT. Unlike most MaxSAT algorithms, MaxHS is
a “hybrid” approach that utilizes both an IP solver and a SAT solver. This
approach sidesteps issues that can arise from the incrementally expanding
SAT formula of most MaxSAT solvers. Instead, MaxHS works with a fixed
SAT formula and a growing IP problem.

In this work we analyze and extend MaxHS using our from-scratch re-
implementation of the algorithm, LMHS. We analyze the effect of a range of
so-called non-optimal hitting set strategies for the MaxHS algorithm. Our
experiments with extending MaxHS include

• modifying the final conflict analysis procedure of the underlying SAT
solver to enable polynomial-time computation of additional cores,

• an exploration of parallelizing the MaxHS algorithm by means of
heuristic randomization and partitioning,

• applying external constraint propagation within a MaxSAT solver for
constraints that are potentially inefficient to express in CNF, and

• evaluating recent work [20, 21] on integrating SAT-based preprocessing
with MaxSAT solvers.

We also develop an incremental MaxSAT API for LMHS and examine an
application of incremental MaxSAT solving [100].

This thesis is organized as follows. Section 2 establishes the required
prerequisite knowledge of SAT and MaxSAT. Section 3 covers the MaxHS
algorithm. Section 4 explains the implementation of our solver LMHS,
evaluates its performance with different SAT and IP solvers and non-optimal
hitting set strategies, and compares its performance to other state-of-the-art
MaxSAT solvers. Section 5 introduces and evaluates our extensions to the

2

MaxHS algorithm. Sections 5.6 and 6 cover the LMHS incremental API and
an application of incremental MaxSAT, respectively. Section 7 concludes
this work and outlines possible further work on the topic.

2 Preliminaries
This section covers prerequisite information. We begin with a short overview
of satisfiability and satisfiability solvers. We then review an optimization
version of satisfiability, maximum satisfiability, and its common extensions.
We also survey some recent and classical methods for solving maximum
satisfiability problems. This section ends with an overview of another discrete
optimization paradigm, integer programming, which plays an important role
in the MaxHS algorithm.

2.1 SAT

Boolean satisfiability (SAT) [47] is one of the most studied problems in
computational complexity theory. Given a propositional logic formula F
over a set of Boolean variables X, it asks if there exists a truth assignment
τ : X → {0, 1} such that F is true under τ . If such an assignment exists, the
formula F is satisfiable. Otherwise F is unsatisfiable. With the exception of
restricted classes of formulas such as 2-SAT [7] and Horn-SAT [40], SAT is
an NP-complete problem [31]. In other words, no polynomial-time algorithm
is known for the problem, but solutions can be verified in polynomial time.
Given a complete truth assignment τ for a formula F , the time complexity
of determining τ(F) is linear in the size of F .

Boolean satisfiability is often restricted to conjunctive normal form (CNF)
formulas. CNF is a subset of propositional logic restricted to conjunctions
(∧) of disjunctions (∨) of Boolean variables x and their negations ¬x.

Definition 1. Syntax of CNF.

• A literal l is a Boolean variable x or its negation ¬x.

• A clause C is a disjunction
∨m
i=1 li of literals l1, . . . , lm.

• A formula in CNF is a conjunction of clauses
∧n
i=1Ci.

Any propositional logic formula can be converted to CNF using the rules
of Boolean algebra [98]. Such a conversion will result in an exponential
number of clauses in the worst case, rendering it impractical for general use.
However, more efficient encodings exist. For example, the commonly used
Tseitin encoding [105] introduces only a linear number of new clauses in the
conversion, at the cost of a linear number of new variables.

When convenient, we treat a CNF formula as a set of clauses, trusting
that their implicit conjunction is clear from the context. The advantage of

3

CNF is that its simple clausal structure makes it convenient to process—and
reason about—large formulas. Indeed, the Boolean satisfiability problem for
CNF formulas (CNF-SAT) is so common that it is usually simply referred to
as SAT. Definition 2 formalizes the concept of satisfiability for CNF formulas.

Definition 2. Semantics of CNF-SAT.

• A (complete) truth assignment τ for the variables X of a formula F
is a function τ : X → {0, 1}, which assigns either x = 0 or x = 1 for
every x ∈ X.

• The literal x is true if x = 1 under τ , and the literal ¬x is true if x = 0
under τ . If a literal l is true under τ , then τ(l) = 1. If the variable of
a literal l is not assigned under τ , it is undefined.

• A clause C =
∨m
i=1 li is true under (or equivalently, satisfied by) τ ,

τ(C) = 1, if and only if at least one of the literals li is true under τ .
An empty clause is unsatisfiable.

• A formula F =
∧n
i=1Ci is satisfied by τ , τ(F) = 1, if and only if every

clause Ci is true under τ . If τ(F) = 1, then τ is a satisfying assignment
for F . An empty formula is satisfiable.

2.2 SAT solvers

Despite the computational complexity of SAT, developments in solving
techniques, driven in part by frequent competitions [60], have led to very
efficient SAT solvers and algorithms. Many of these solvers are based on
conflict-driven clause learning (CDCL) [82] algorithm, the core parts of
which were first introduced in [85]. Intuitively, CDCL is able to implicitly
exploit the structure present in real-world instances. While the CDCL
algorithm is not well-suited to randomly generated instances due to the lack
of real-world structure, it has become practical to use a SAT solver for large
formulas in many applications [78]. These developments have also opened
the door for applying these solvers as NP oracles for optimization problems
beyond NP such as AI planning [67], QBF solving [59], and propositional
circumscription [58].

Algorithm 1 gives a sketch of the CDCL algorithm. The algorithm begins
by applying constraint propagation. This is commonly implemented as unit
propagation (we consider additional propagation techniques based on external
constraints in Section 5.3). Given a partial truth assignment τ , a clause
C =

∨m
i=1 li, is unit under τ if there exists a literal li ∈ C such that τ(lj) is

undefined and τ(li) = 0 for all i 6= j. A unit clause is trivially unit under τ
if its single literal has an undefined value. If a clause is unit under τ , unit
propagation will extend τ with a variable assignment which satisfies the
undefined literal. This new assignment can then be propagated in the same

4

Algorithm 1 Conflict-driven clause learning
1: function CDCL(F)
2: D ← ∅
3: τ ← ∅ . initialize an empty assignment
4: while True do
5: (c, τ)← Propagate(A, τ,F)
6: if c contains a conflict then
7: if D = ∅ then
8: return Unsatisfiable
9: else . learn a conflict clause

10: C ← AnalyzeConflict(c)
11: F ← F ∪ {C}
12: (D, τ)← UndoDecisions(D, τ, C) . backjump
13: else if τ(F) = 1 then
14: return Satisfiable, τ
15: else . make a new decision
16: Choose a variable x unassigned by τ
17: Make a decision for x: d← {x = 0} or d← {x = 1}
18: D ← D ∪ {d}

manner. The Propagate function of Algorithm 1 returns a description of
the conflict c in terms of conflicting assignments if propagation results in an
unsatisfied clause. Otherwise a (possibly partial) assignment τ is given.

If the variable assignment given by propagation satisfies all clauses, then
F is satisfiable. If a partial assignment does not cause a conflict or satisfy
all clauses, a new decision is made. A currently unassigned variable x and
an assignment {x = 0} or {x = 1} is chosen, and the algorithm continues by
propagating this assignment.

One of the features which differentiates CDCL from a standard backtrack-
ing search is how conflicts are handled. Rather than undoing a single decision
and continuing search, the conflict is analyzed to yield a conflict clause C,
which captures the cause of unsatisfiability in the current assignment. The
clause C can then be added to F and search can backjump, eliminating a
potentially large portion of the search space. Backjumping is accomplished
by undoing decisions which caused the conflict. In Algorithm 1, the conflict
clause is computed by the AnalyzeConflict procedure. Decisions and any
assignments propagated from them are undone based on the conflict clause
by UndoDecisions.

Unlike a traditional backtracking search, CDCL does not terminate for an
unsatisfiable formula only after considering the entire search space. Rather,
the conflict analysis procedure of CDCL will eventually learn an empty
clause, at which point F must be unsatisfiable. The CDCL algorithm is

5

often improved in practice by heuristics for choosing decision variables (e.g.
VSIDS [90]), search restarts [56], and other extensions [66].

2.3 Maximum satisfiability

Maximum satisfiability (MaxSAT) is an optimization extension of Boolean
satisfiability [74]. In this section we review MaxSAT and its extensions, as
well as the relevant notation and terminology.

Unweighted MaxSAT Given an unsatisfiable CNF formula F , it is nat-
ural to ask what is the largest number of clauses in F that can be simul-
taneously satisfied. The MaxSAT problem asks us to find an assignment τ
that maximizes the number of satisfied clauses

∑
C∈F τ(C). Equivalently,

the task is to find a subformula F ′ ⊂ F with a maximum number of clauses
such that there exists a truth assignment τ for which τ(F ′) = 1. The set of
all such optimal solutions for a formula F is opt(F). The number of clauses
not satisfied by a truth assignment τ is cost(τ) =

∑
C∈F (1− τ(C)). If F is

satisfiable, then there exists τ such that
∑
C∈F τ(C) = |F|, and cost(τ) = 0.

As an example, consider the following unsatisfiable CNF formula, and
the possible assignments for its variables x1 and x2.

F = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (x1) ∧ (x2). (1)

The truth assignment {x1 = 0, x2 = 0} satisfies three clauses, {x1 = 1, x2 =
0} and {x1 = 0, x2 = 1} both satisfy four clauses, while {x1 = 1, x2 = 1}
satisfies five clauses. Thus, {x1 = 1, x2 = 1} ∈ opt(F). This assignment τ
satisfies five of the six clauses, so cost(τ) = 1 due to the fact that τ does not
satisfy the clause (¬x1 ∨ ¬x2).

Partial MaxSAT There are several extensions to MaxSAT which allow
for more natural or succinct encodings of problems. A common extension is
partial MaxSAT. An instance of the partial MaxSAT problem consists of a
set of hard clauses Fh, which must be satisfied, and a set of soft clauses Fs,
which need not be satisfied. Here we make the distinction between a partial
MaxSAT instance (Fh,Fs) and the CNF formulas Fh and Fs. A partial
MaxSAT problem asks us to find a truth assignment τ̂ such that τ̂(Fh) = 1
and τ̂ ∈ arg maxτ

∑
C∈Fs

τ(C). Similar to plain MaxSAT, the cost of a
solution to a partial MaxSAT instance is cost(τ) =

∑
C∈Fs

(1− τ(C)). If Fh
is unsatisfiable (i.e., there exists no τ for which τ(Fh) = 1), then the partial
MaxSAT instance (Fh,Fs) is unsatisfiable regardless of Fs. MaxSAT is a
special case of partial MaxSAT, where Fh = ∅. A partial MaxSAT instance
can be converted into a MaxSAT instance by creating |Fs| additional copies
of each hard clause, and rejecting solutions with a cost greater than |Fs|.

6

We look again at the example of Equation 1, but now partition it into
soft and hard clauses to create the partial MaxSAT instance (Fh,Fs) :

Fh = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),
Fs = (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (x1) ∧ (x2).

(2)

Notice that the optimal solution for Equation 1, {x1 = 1, x2 = 1}, is no longer
valid as it falsifies the hard clause (¬x1 ∨ ¬x2). In fact, only two possible
assignments remain. The truth assignment {x1 = 0, x2 = 1} satisfies the same
four clauses as in the previous (non-partial) example, and {x1 = 0, x2 = 0}
satisfies only three clauses. It follows that the optimal solution for the
formula is {x1 = 0, x2 = 1}. This solution has cost 2 from the two clauses
not satisfied by it.

Weighted Partial MaxSAT A second common extension of SAT aug-
ments a CNF formula with weights. Weighted MaxSAT associates a positive
weight (or cost) with each C ∈ F . Formally, it specifies a cost function
c : F → R+. Both MaxSAT and partial MaxSAT can be viewed as spe-
cial cases of weighted MaxSAT in terms of optimal solutions. A MaxSAT
problem is a weighted MaxSAT problem with c(C) = 1 for all C ∈ F . A
partial MaxSAT problem is a weighted MaxSAT problem where c(C) = 1
for all C ∈ Fs and c(C) = |Fs| + 1 for all C ∈ Fh, with the additional
consideration that no τ for which cost(τ) > |Fs| is a valid solution. Alterna-
tively, one could let c(C) =∞ for all C ∈ Fh. An optimal truth assignment
τ = opt(F) is now one that minimizes the total cost of the unsatisfied clauses,
cost(τ) =

∑
C∈F

(
(1− τ(C)) · c(C)

)
. The limitations of many MaxSAT algo-

rithms mean that clause weights are commonly restricted to integer values,
but the methods this work focuses on have no such limitation.

It is common to combine the partial and weighted extensions into weighted
partial MaxSAT. This is the most general widely considered variant of the
MaxSAT problem, and the variant which we will focus on. Predictably, it
combines the distinction between hard and soft clauses of partial MaxSAT
with the cost function of weighted MaxSAT. Formally, a weighted partial
MaxSAT instance (Fh,Fs, c) consists of a set of hard clauses Fh, a set of soft
clauses Fs, and a cost function c : Fs → R+. An optimal solution minimizes
the cost of unsatisfied soft clauses cost(τ) =

∑
C∈Fs

(
(1− τ(C)) · c(C)

)
and

satisfies the hard clauses Fh.
Updating our running example formula with weights, and using the

notation (C,w) to denote a soft clause C with weight c(C) = w, we create a
weighted partial MaxSAT instance

Fh = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),
Fs = (x1 ∨ ¬x2, 3) ∧ (x1 ∨ x2, 1) ∧ (x1, 1) ∧ (x2, 1).

(3)

7

We look again at the viable variable assignments for the partial MaxSAT
instance of Equation 2. Given the new weights, the previously optimal model
{x1 = 0, x2 = 1} now has cost 4, as it does not satisfy the weighted soft
clauses (x1 ∨ ¬x2, 3) and (x1, 1). Our other viable assignment in terms of
the hard clauses, {x1 = 0, x2 = 0}, does not satisfy soft clauses (x1 ∨ x2, 1),
(x1, 1), and (x2, 1). These unsatisfied clauses have total cost 3. In this case
there are no other models which satisfy Fh, so {x1 = 0, x2 = 0} must be
optimal.

2.3.1 Unsatisfiable cores

A final consideration to be addressed before discussing MaxSAT algorithms
is the concept of unsatisfiable subsets of clauses. An unsatisfiable subset, or
core, of a partial MaxSAT instance (Fh,Fs) is a set of clauses κ ⊆ Fs such
that Fh∪κ is unsatisfiable. A core κ is a minimal unsatisfiable subset (MUS)
if for every proper subset κ′ ⊂ κ, we have that κ′ ∪ Fh is satisfiable. This
general definition also extends to plain MaxSAT and SAT, where Fh = ∅. In
other words, a core of a plain MaxSAT instance is simply an unsatisfiable
subformula. To illustrate the concept, let F = (Fh,Fs) be the partial
MaxSAT formula of Equation 2:

Fh = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),
Fs = (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (x1) ∧ (x2).

Here κ = {(x1∨¬x2), (x1∨x2)} is a core, because Fh∧ (x1∨¬x2)∧ (x1∨x2)
is unsatisfiable. Furthermore, κ is minimal because both Fh ∧ (x1 ∨ ¬x2)
and Fh ∧ (x1 ∨ x2) are satisfiable, as they have satisfying assignments {x1 =
0, x2 = 0} and {x1 = 0, x2 = 1}. On the other hand, the set of soft clauses
{(x1 ∨ x2), (x1), (x2)} is also a core, but it is not minimal because its subset
{(x1), (x2)} is a core.

Finally, we show that there exist partial MaxSAT instances with expo-
nentially many minimal cores.

Theorem 3. The number of cores in a partial MaxSAT instance (Fh,Fs)
can be exponential in m = |Fs|.

Proof. Let Fs =
∧m
i=1Ci and let Fh be a CNF encoding of

∑
Ci∈Fs

Ci <
m
2 .

No assignment which satisfies m
2 soft clauses satisfies Fh, and as such any

set of m2 soft clauses is a (minimal) core. There are

(
m

m/2

)
= m!

m
2 !m2 ! =

∏m
i=m/2+1 i

m
2 ! =

m/2∏
i=1

m
2 + i

i
> 2m/2

such cores.

8

2.3.2 MaxSAT solvers

This section gives a short overview of techniques for solving MaxSAT. Mod-
ern MaxSAT algorithms can for the most part be roughly categorized into
four categories. So-called SAT based algorithms [3], which iteratively use a
SAT solver, can be split into satisfiability-based and unsatisfiability-based ap-
proaches. These iterative SAT-based algorithms often rely on CNF encodings
of cardinality constraints, that is, constraints of the form

∑n
i=0 xi ≤ k. This

type of constraint sees use in many applications, which has led to a consider-
able amount of work [10, 5, 30, 45, 80, 104] towards finding efficient CNF
encodings for them. A third category of branch-and-bound algorithms [72]
have also been applied to MaxSAT successfully in some domains. A fourth
approach is reformulating a MaxSAT instance or some subproblem into
another problem domain such as IP [101]. As with SAT solvers, interna-
tional competitive events have helped push the development of algorithms
for MaxSAT. Since 2006, the yearly MaxSAT Evaluations1 have assessed
the state-of-the-art in MaxSAT solvers.

Unsatisfiability-based algorithms A common type of algorithm for
MaxSAT begins with an unsatisfiable working SAT formula F and gradually
relaxes it until the working formula becomes satisfiable. This is typically
done by identifying unsatisfiable cores in F and modifying the CNF encoding
to remove the individual core. The sequence of unsatisfiable SAT problems
corresponds to an increasing lower bound for the optimal MaxSAT solution.
As an example, we examine the archetypal core-based procedure of Fu and
Malik [48], outlined in Algorithm 2.

Algorithm 2 The Fu–Malik core-based partial MaxSAT algorithm.
Require: Fh is satisfiable.

1: function FuMalik(Fh,Fs)
2: while True do
3: (sat, κ, τ)← SolveSAT(Fh ∪ Fs)
4: if sat then break
5: A← ∅
6: for C ∈ κ do
7: Allocate a new relaxation variable a.
8: Fs ← (Fs \ {C}) ∪ {(C ∨ a)}
9: A← A ∪ a

10: Fh ← Fh ∪ CNF (
∑
a∈A a = 1)

11: return τ

Algorithm 2 uses a SAT solver to identify unsatisfiable cores. Each core κ
1http://www.maxsat.udl.cat/

9

http://www.maxsat.udl.cat/

is relaxed by adding new relaxation variables a to each of its clauses (Line 6)
and adding a hard constraint (Line 10) requiring that only one of these
relaxation variables be true. This process is repeated until no more cores
are found, i.e., the relaxed formula becomes satisfiable. A drawback of this
method is that a new variable is added to a clause for every core it is found in.
Together with the added hard constraints, this means that each subsequent
SAT solver call is on a more complex formula.

The Fu–Malik algorithm was extended and improved on in [83, 4], and
implemented in, e.g., the solvers MSUnCore and WPM1. A more recent
core-based solver, eva500a [92] solved the most industrial weighted partial
MaxSAT instances in the 2014 MaxSAT Evaluation.

Satisfiability-based algorithms Another category of algorithms begins
with a satisfiable SAT problem and iteratively constrains it until the formula
becomes unsatisfiable. The sequence of satisfiable SAT problems corresponds
to a decreasing upper bound for the MaxSAT problem. Algorithm 3 outlines
a simple satisfiability-based MaxSAT algorithm, which uses a linear search
to find an optimal solution. Conceptually similar algorithms are found in,
e.g., the linear search algorithm of Open-WBO [87] and the QMaxSAT [70]
solver.

Algorithm 3 A satisfiability-based linear search algorithm for MaxSAT.
Require: F is unsatisfiable.

1: function LinearMaxSAT(F)
2: F ′ ← {(Ci ∨ ai) : Ci ∈ F}
3: Card← ∅
4: τ ′ ← ∅
5: while True do
6: (sat, τ)← SolveSAT(F ′ ∪ Card)
7: if not sat then break
8: k ← “number of ai variables true in τ”
9: Card← CNF (

∑n
i=0 ai < k)

10: τ ′ ← τ
11: return τ ′

Algorithm 3 uses satisfiable SAT problems to perform a linear search
for the optimal MaxSAT solution. For simplicity it is presented here for
plain MaxSAT, but is easily extended to partial MaxSAT by relaxing only
the soft clauses the instance. The algorithm begins by relaxing every clause
of a MaxSAT problem with a unique relaxation variable ai (Line 2). The
resulting formula can clearly be satisfied by any model in which all of
the newly added relaxation variables are true. The algorithm maintains a
cardinality constraint Card that is updated with every found model (Line 9).
The purpose of the constraint is to check whether there exists a model which

10

has fewer true relaxation variables than the previous model. Once this
cardinality constraint makes the SAT formula unsatisfiable, we know that
the previous model is an optimal one.

Branch-and-bound Solvers based on branch-and-bound have tradition-
ally been most effective on unweighted and random MaxSAT instances, but
recent MaxSAT evaluations have shown them to be comparatively ineffec-
tive on real-world weighted partial instances. Some solvers of note include
ahmaxsat [1], which won several categories in the 2014 MaxSAT Evaluation
and, MaxSatz [75], which was the best solver for unweighted MaxSAT in
the 2007 evaluation. Another interesting branch-and-bound approach was
used in clone [97], which derived bounds by compiling relaxed formulas to
the tractable language of d-DNNF [34].

Reformulation and hybrid approaches Yet another approach is to
reformulate a MaxSAT instance as an instance of another optimization
problem. Section 2.4 provides an example of such an approach with an
integer programming reformulation of MaxSAT.

The focus of this work is on MaxHS, a hybrid approach. Like most
unsatisfiability-based algorithms, MaxHS identifies unsatisfiable cores of
the MaxSAT instance. However, it differs from the algorithms already
discussed in this section in several ways. The algorithm adds no clauses to
the formula and does not require any additional cardinality constraints to
be encoded in CNF. It uses both a SAT solver and an integer programming
solver, identifying the unsatisfiable cores with the SAT solver and essentially
incrementally reformulating the optimization aspect of MaxSAT as an IP
problem. Section 3 examines the algorithm in more detail.

2.4 Integer programming

Integer programming (IP) problems are linear programming (LP) problems
with the additional constraint that variables must take integral values. Solv-
ing an IP problem involves finding an integral solution to a system of linear
equations, which maximizes or minimizes some objective function. Unlike
LP, for which polynomial time algorithms exist [68, 64, 41], IP is known to
be NP-complete [101]. In this work our interest in IP is primarily limited
to using IP solvers as black boxes, not the specific methods by which IP
problems are solved. Section 3 focuses specifically on the MaxHS algorithm,
which uses an IP solver internally for solving specific sub-problems. Sec-
tion 6 looks at modifying an IP-based method for optimal Bayesian network
learning.

In integer programming, we seek to maximize or minimize a linear objec-

11

tive function f of the form

f(x1, . . . , xn) = w1x1 + · · ·+ wnxn,

where x1, . . . , xn are the problem variables and w1, . . . , wn are some fixed
weights. This optimization is subject to a set of linear constraints of the
form

a1x1 + · · ·+ anxn ≤ k or a1x1 + · · ·+ anxn ≥ k

with fixed coefficients ai and k. An IP problem will additionally constrain
(some of) the variables x1, . . . , xn to integers, or some subset of integers.
In this work, binary variables will often be used, giving us the integrality
constraint

xi ∈ {0, 1} for all xi.

As an example, consider the following reformulation of weighted partial
MaxSAT as integer programming [74]. Let F = (Fh,Fs, c) be a MaxSAT
instance with variables x1, . . . , xn and |Fs| = m. Now introduce new binary
variables y1, . . . , ym corresponding to the soft clauses Ci ∈ Fs and let c(yi) =
c(Ci). Now the IP can be expressed as

minimize
m∑
i=1

yi · c(yi),

subject to
∑
xi∈Cj

xi −
∑
¬xi∈Cj

xi + yj ≥ 1 ∀Cj ∈ Fs,

∑
xi∈Cj

xi −
∑
¬xi∈Cj

xi ≥ 1 ∀Cj ∈ Fh,

xi, yj ∈ {0, 1} ∀xi,∀yj .

In other words, we assert that each hard clause must have at least one
satisfied literal. Each soft clause must either have a satisfied literal or its
corresponding yi variable must be 1. These yi variables are used to construct
the objective function under minimization.

3 The MaxHS algorithm
MaxHS is a recent core-based algorithm for solving MaxSAT. The concept
was initially introduced by Jessica Davies and Fahiem Bacchus in [37] and
further refined in [38, 39, 36]. A solver based on the MaxHS algorithm was
able to solve the most weighted partial MaxSAT instances in the crafted
category of the 2013 MaxSAT Evaluation2. The algorithm is differentiated
from other successful MaxSAT algorithms by its hybrid approach. It essen-
tially separates the satisfiability and optimization parts of MaxSAT so that

2http://www.maxsat.udl.cat/13/

12

http://www.maxsat.udl.cat/13/

a suitable method can be used to solve each part. A SAT solver is used to
identify unsatisfiable cores, and an IP solver is used to compute minimum
cost hitting sets for these cores. This can be thought of as an instantiation of
a general implicit hitting set approach to optimization [27, 88] to MaxSAT.
Purely SAT-based MaxSAT solvers solve a sequence of problems which tend
to get harder with each iteration as more constraints are added to the CNF
formula. The separation between SAT and IP in MaxHS allows us to avoid
introducing additional constraints to the CNF formula. In fact, the SAT
problems solved by MaxHS tend to get easier with each iteration of the
algorithm.

3.1 Hitting sets

The MaxHS algorithm relies on an integer programming (IP) solver to find
minimum-cost hitting sets for sets of unsatisfiable cores of a weighted partial
MaxSAT instance. Given a set S = {s1, . . . , sn} of sets, a hitting set (HS)
of S is a set H such that H ∩ si 6= ∅ for all si ∈ S. In other words, some
element of every si must be “hit” by an element of H. Given a cost function
c : S → R+, a minimum-cost hitting set (MCHS) for S is a hitting set that
minimizes

∑
si∈H c(si) over all hitting sets of S. The hitting set problem is

equivalent to the set cover problem, which is NP-complete in its decision
problem form [65]. A well-known IP formulation of MCHS, presented in the
context of MaxHS, follows. Let (Fh,Fs, c) be a weighted partial MaxSAT
instance. Each core κ is a subset of Fs and K is a set of cores. Now we can
express the IP as

minimize
∑
C∈Fs

c(C) · xC ,

subject to
∑
C∈κ

xC ≥ 1 ∀κ ∈ K,

xC ∈ {0, 1} ∀C ∈ Fs.

(4)

We introduce a binary variable xC for each clause C in Fs. A solution with
xC = 1 signifies that C is in the corresponding hitting set H. Conversely,
C /∈ H if xC = 0. Equation 4 introduces for each core κ ∈ K a constraint
requiring that xC = 1 for at least one C ∈ κ. The objective is then to
minimize the sum of the costs of clauses C for which xC = 1.

Minimum-cost hitting set approximations are also of interest for MaxHS,
as detailed in Section 3.4. To that end, Algorithm 4 adapts the greedy set
cover algorithm of [61] to the weighted hitting set problem. Algorithm 4
begins by initializing a working hitting set H and a set of unhit cores U
(Lines 2 and 3). While unhit cores remain, the algorithm gathers (Line 5)
the set of elements in unhit cores and greedily chooses (Line 6) the element
e that maximizes the ratio of cost c(e) to the number of previously unhit
sets hit by e. The subroutine Count(U, e) returns the number of sets in

13

Algorithm 4 A greedy hitting set algorithm.
1: function GreedyHS(K, c)
2: H ← ∅
3: U ← K
4: while U 6= ∅ do
5: E ←

⋃
κ∈U κ

6: e← arg maxe∈E(c(e)/Count(U, e))
7: H ← H ∪ {e}
8: U ← U \ {κ ∈ U : e ∈ κ}
9: return H

U which are hit by e. The chosen element e is then added (Line 7) to the
hitting set and every core κ hit by e is removed (Line 8) from U .

3.2 Solving MaxSAT with cores and hitting sets

The MaxHS algorithm is based on the principle that a minimum-cost hitting
set for the cores of a MaxSAT instance corresponds to an optimal MaxSAT
solution. The intuition behind this is simple: if we know every possible
unsatisfiable subset of clauses and a MCHS over these subsets, there must
exist a MaxSAT solution which satisfies every clause not in the hitting set.
Furthermore, because the hitting set is of minimum weight, this MaxSAT
solution has maximum weight among all solutions. This type of algorithm
can be traced at least as far back as [99], in which an algorithm which finds
a hitting set over so-called “conflict sets” for diagnostic reasoning problems
is suggested.

A key observation (Theorem 4) here is that it is often not necessary
to find every core to find an optimal MaxSAT solution. If the cores of a
MaxSAT instance have significant overlap, it is likely that a clause from
one core will hit multiple cores even if they have not been identified. For a
MaxSAT instance (Fh,Fs) we need only to find a MCHS H over some set
cores K such that Fh ∪ (Fs \H) is satisfiable. That is, it is sufficient to find
a MCHS over a set of cores such that removing its clauses from the MaxSAT
instance makes it satisfiable.

Theorem 4. [37] Let F = (Fh,Fs, c) be a weighted partial MaxSAT instance.
Assume that K is a subset of the cores of F , H is a MCHS of K, and τ is a
satisfying truth assignment for Fh ∪ (Fs \H). Let τ̂ ∈ opt(F), then

cost(τ̂) = cost(τ) = cost(H).

Proof. Since τ̂ has minimal cost over all assignments, cost(τ̂) ≤ cost(τ) must
hold. The truth assignment of τ satisfies every clause of Fh ∪ (Fs \ H),
so its cost can be no greater than the cost of the excluded clauses of H,

14

and thus cost(τ) ≤ cost(H) must hold. Finally, H hits the cores in K with
minimum cost, and τ̂ must leave unsatisfied a clause from every core of F
with minimum cost. It follows that cost(τ̂) ≥ cost(H).

SAT Solver
Fh ∪ (Fs \H)

IP Solver
MCHS(K, c)

H

K ← K ∪ {κ}

UNSAT

Input

c : Fs → R+Fh ∪ Fs

Output
τ,
∑
C∈H c(C)
SAT

Figure 1: MaxHS information flow.

This observation leads naturally to the MaxHS algorithm. Figure 1
visualizes this concept and the flow of information between the SAT and
IP solvers. With a SAT solver which allows us to extract a core of an
unsatisfiable CNF formula, we can extract a new core of Fh ∪ (Fs \H) until
the hitting set H for the resulting set of cores corresponds to an optimal
solution. After this, the found satisfying variable assignment will be optimal.
The minimum-cost hitting set problem can be solved with an IP solver
with the formulation of Algorithm 4. This IP solver needs only the cores
(which can be incrementally added to the problem as they are found) and the
MaxSAT cost function; it does not require knowledge of the CNF formula.
Likewise, the SAT solver can operate independently of the cost function.
The visualization of Figure 1 is presented more concretely as Algorithm 5.

Algorithm 5 begins by initializing an empty set of cores and an empty
hitting set. An initial SAT solver invocation (Line 4) serves to check the
trivial case in which Fh ∪ Fs is satisfiable. If it is not satisfiable, a core κ is
found and the main loop of the algorithm follows. The core κ is added to
K (Line 6) and a minimum-cost hitting set H is computed for K. The SAT
solver is then invoked (Line 8) to determine the satisfiability of Fh∪ (Fs \H).

15

Algorithm 5 A core-based algorithm for MaxSAT using hitting sets [37].
Require: Fh is satisfiable.

1: function MaxHS(Fh,Fs, c)
2: K ← ∅
3: H ← ∅
4: (sat, κ, τ)← SolveSAT(Fh ∪ Fs)
5: while not sat do
6: K ← K ∪ {κ}
7: H ← SolveMCHS(K, c)
8: (sat, κ, τ)← SolveSAT(Fh ∪ (Fs \H))
9: return τ

Lines 6–8 are repeated until Fh ∪ (Fs \H) is satisfiable, at which point τ is
an optimal solution by Theorem 4.

It is interesting to note that although the worst-case behavior of MaxHS
is in a sense sub-optimal, it has proven to be effective in practice. MaxHS
could require an exponential number of SAT and IP solver invocations. This
is because cores found in MaxHS are not guaranteed to raise the lower
bound, so it is possible that all cores must be found. Theorem 3 states
that there can be an exponential number of cores in a MaxSAT instance.
Davies and Bacchus show in [39] that there exist instances for which the
MaxHS algorithm must also find an exponential number of cores. By contrast,
some purely SAT-based approaches require a linear number of SAT solver
invocations. However, these approaches must deal with a formula which
grows with each iteration. Theorem 5 shows that the MaxHS algorithm will
find an optimal solution and terminates.

Theorem 5. [37] Algorithm 5 finds opt(F) and terminates.

Proof. That the algorithm finds opt(F) follows from Theorem 4. We note
that F is finite, and as such has a finite number of cores. Each H removes
every core of K from F , so at every iteration κ will be distinct from (and
not a superset of) each core already in K. It follows that given sufficient
iterations, Algorithm 5 will find every core of F , and the hitting set H will
hit each of them. At this point Fh ∪ (Fs \H) must be satisfiable, and the
algorithm will terminate.

For a short example execution of MaxHS, we use the following weighted
partial MaxSAT instance.

Fh = (x1 ∨ x2) ∧ (¬x1 ∨ x2),
Fs = (x1 ∨ ¬x2, 2) ∧ (¬x1 ∨ ¬x2, 3) ∧ (x1, 4) ∧ (x2, 4) ∧ (¬x1, 2).

Table 1 shows a possible execution of the MaxHS algorithm for the instance
(Fh,Fs). It shows a core found at each iteration, the minimum-cost hitting set

16

computed for all cores found up to that iteration, and the cost of the hitting
set. Recall that the satisfiability of a partial MaxSAT core is considered
in conjunction with the set of hard clauses. At the fifth iteration, no core
is found and an optimal solution has been found. The example of Table 1
illustrates the fact that the MCHS does not necessarily grow in size with
the number of cores found. It also provides an example of implicitly hit
cores. The cores {(¬x1), (x1 ∨ ¬x2)} and {(x1), (¬x1 ∨ ¬x2)} are hit by
the final hitting set despite never having been explicitly identified. We
also note that the cores need not be minimal as, e.g., the set of clauses
{(x1), (¬x1 ∨ ¬x2)} ⊂ {(x1), (x2), (¬x1 ∨ ¬x2)} is a core.

Iteration Core MCHS MCHS cost
1 {(x1 ∨ ¬x2), (¬x1 ∨ ¬x2)} {(x1 ∨ ¬x2)} 2
2 {(x1), (x2)(¬x1 ∨ ¬x2)} {(¬x1 ∨ ¬x2)} 3
3 {(¬x1), (x2), (x1 ∨ ¬x2)} {(¬x1 ∨ ¬x2), (x1 ∨ ¬x2)} 5
4 {(x1), (¬x1)} {(x1), (x1 ∨ ¬x2)} 6
5 − {(x1), (x1 ∨ ¬x2)} 6

Table 1: MaxHS algorithm execution.

3.3 Assumption variables in MaxHS

When possible, algorithms and techniques will be presented on the abstraction
level of Algorithm 5. However, in the context of this work it is necessary to
consider one specific detail of the implementation: the use of assumptions
and assumptions variables in solving the sequence of SAT problems [43].
Assumptions can be typically treated as a transparent aspect of the algorithm
implementation, but Sections 3.5.2 and 5.4 discuss how they can be exploited
in the solving process.

The MaxHS procedure is dependent on the ability to efficiently remove
and reinsert soft clauses into the working formula. With each hitting set,
Line 8 of Algorithm 5 must temporarily remove some clauses from the SAT
solver. Explicit removal of a clause C is not practical in CDCL SAT solvers
due to the difficulty of determining which learned clauses depend on C. Many
solvers [44, 22, 50] offer an alternative in the form of assumptions.

A set of assumptions is a partial assignment to the variables of a formula.
This partial assignment is treated as permanent top-level decisions in the
CDCL algorithm for an invocation of the solver. Given a formula F = Fh∪Fs,
assumptions can be used to temporarily remove (or disable) soft clauses in
successive SAT calls. It is first necessary to introduce an assumption variable3,
a previously unused binary variable ai, for each soft clause in Fs. Then a
new formula F ′ = Fh ∪ F ′s can be created, where F ′s =

⋃
Ci∈Fs

{(Ci ∨ ai)}.
3Assumption variables are also known as relaxation variables, blocking variables, or

labels

17

Algorithm 6 CDCL with assumptions
1: function AssumptionCDCL(F , A)
2: D ← A
3: τ ← ∅
4: while True do
5: (c, τ)← Propagate(F , D, τ)
6: if c contains a conflict then
7: if |D| = |A| then
8: return AnalyzeFinalConflict(c)
9: else . learn a conflict clause

10: C ← AnalyzeConflict(c)
11: F ← F ∪ {C}
12: (D, τ)← UndoDecisions(D, τ, C) . backjump
13: else if τ(F) = 1 then
14: return Satisfiable, τ
15: else . make a new decision
16: Choose a variable x unassigned by τ
17: Make a decision for x: d← {x = 0} or d← {x = 1}
18: D ← D ∪ {d}

When used to solve F ′, the SAT solver can be given a set of assumptions over
the new variables ai. Assuming ai = 0 “enables” the corresponding original
clause Ci as the only way to satisfy (Ci ∨ ai) is to satisfy Ci. Assuming
ai = 1 “disables” Ci by satisfying (Ci ∨ ai), which leaves the solver free to
ignore Ci. These assumptions can be combined to exclude an arbitrary set
of soft clauses, allowing us to solve a subformula of F without permanently
removing clauses.

Recall the CDCL procedure of Algorithm 1. Algorithm 6 extends it to
determine the satisfiability of a formula F under a set of assumptions A.
Some key changes to plain CDCL are necessary to solve under assumptions
and to evaluate unsatisfiability in terms of assumptions. The assumptions
in A are used as a base-level variable assignment in the CDCL search.
These are permanent for the duration of the search, and UndoDecisions
is not permitted to remove them. The CDCL termination condition for
unsatisfiability is also modified. Rather than reporting unsatisfiability when
a conflict is derived under no assignments, this is done when only the initial
assignments of the assumptions are left. Finally, AnalyzeFinalConflict, a
specialization of AnalyzeConflict, will produce a conflict clause containing
only literals in A, constituting an unsat core of F under A. This functionality
is available for example in the commonly used MiniSat [44] SAT-solver.

Algorithm 7 re-frames MaxHS in terms of assumptions. When consider-
ing assumption variables, we temporarily abandon the clause-centric view

18

Algorithm 7 MaxHS with assumptions.
Require: Fh is satisfiable.

1: function MaxHS(Fh,Fs, c)
2: F ′ ← Fh ∪ {(Ci ∨ ai) : Ci ∈ Fs} . Relax F with assumptions.
3: K ← ∅
4: H ← ∅
5: (sat, κ, τ)← SolveWithAssumptions(F ′,

⋃m
i=0{ai = 0})

6: while not sat do
7: K ← K ∪ {κ}
8: H ← SolveMCHS(K, c)
9: A← {ai = 1 : ai ∈ H} ∪ {ai = 0 : ai /∈ H})

10: (sat, κ, τ)← SolveWithAssumptions(F ′, A)
11: return τ

of Algorithm 5. Specifically the cores, hitting sets, and cost function in
Algorithm 7 are expressed in terms of assumption variables instead of their
corresponding clauses.

3.4 Using non-optimal hitting sets

Every iteration of Algorithm 5 increases the size of the minimum-cost hitting
set problem that is given to the IP solver. The IP solver must optimally
solve an instance of an NP-hard problem, so it seems natural to try to
avoid these solver calls whenever possible. The technique of deriving cores
from non-optimal hitting sets within MaxHS was introduced in [39] for this
purpose.

To preserve correctness and the optimality of the result, only the last
minimum-cost hitting set computed for MaxHS—which yields a satisfiable
formula—must be optimal. The optimality of a hitting set H has no effect
on the validity of a core derived from Fh ∪ (Fs \H), only on the existence of
cores. In other words, any core of Fh∪(Fs \H) is also a core of Fh∪Fs. This
means that approximation strategies can be used to compute some hitting
sets in polynomial time for the purpose of extracting cores more efficiently.

Algorithm 8 Finding cores via non-optimal hitting sets.
1: function NonOpt(Fh,Fs, c,K, H)
2: repeat
3: H ← NonOptimalHS(K, c)
4: (sat, κ, τ)← SolveSAT(Fh ∪ (Fs \H))
5: if not sat then K ← K ∪ {κ} end if
6: until sat
7: return K

19

Different heuristics can be applied here to try to find a “good” hitting
set H in the sense that Fh ∪ (Fs \ H) is unsatisfiable and thus yields a
core. Optimal hitting sets are still necessary for MaxHS, but only to verify
(by Theorem 4) that a MaxSAT solution is optimal or to find cores when a
non-optimal hitting set does not. Algorithm 8 shows a procedure for utilizing
arbitrary non-optimal hitting sets to find additional cores.

Various techniques exist for computing these non-optimal hitting sets.
The greedy hitting set procedure of Algorithm 4 is one such technique. A non-
optimal hitting set can also be constructed incrementally from an existing
hitting set, for example by inserting into it the clause of a new core κ which is
most common among the cores of K. These techniques are combined in [37]
into a two-phase non-optimal hitting set strategy as shown in Algorithm 9.

Algorithm 9 Using non-optimal minimum-cost hitting sets in two phases.
1: function NonOpt2(Fh,Fs, c,K, κ,H)
2: repeat
3: repeat
4: H ← IncrementalHS(κ,H, c)
5: (sat, κ, τ)← SolveSAT(Fh ∪ (Fs \H))
6: if not sat then K ← K ∪ {κ}
7: until sat
8: H ← GreedyHS(K, c)
9: (sat, κ, τ)← SolveSAT(Fh ∪ (Fs \H))

10: if not sat then K ← K ∪ {κ}
11: until sat
12: return K

Here a distinction is made between IncrementalHS which computes a
new hitting set by simply adding an element from a new core κ to an existing
hitting set, and GreedyHS (recall Algorithm 4), which computes a new
hitting set for a set of cores K. It is also possible to construct a non-optimal
hitting set by adding more than one clause from a newly found core to an
existing hitting set. Davies finds in [36] that adding 10% of the most common
clauses (among other found cores) in a new core to the hitting set performs
well as a heuristic. We empirically investigate the behavior of this type of
non-optimal hitting set strategies in Section 4.2.

3.5 Presolving

Davies and Bacchus established in [38] the benefits of finding an initial set
of constraints for the IP solver as a presolving step before Algorithm 5. As a
result of the hybrid approach of the solver, neither the SAT nor the IP solver
alone has sufficient information to solve a MaxSAT instance. While the SAT

20

solver works on the entire CNF formula from the start, in Algorithm 5 the
IP solver has no knowledge of the problem prior to the first iteration. The
intuition behind finding these initial cores and constraints is to reduce the
number of potentially costly IP solver calls by allowing the solver to make
more informed decisions. In this section we examine two such methods: an
initial phase for finding disjoint cores and assumption variable equivalences.

3.5.1 Disjoint phase

Algorithm 10 Finding a maximal disjoint set of cores in a partial MaxSAT
instance (Fh,Fs).

1: function DisjointCores(Fh,Fs)
2: F ′ ← Fh ∪ Fs
3: K ← ∅
4: repeat
5: (sat, κ, τ)← SolveSAT(F ′)
6: if not sat then
7: K ← K ∪ {κ}
8: F ′ ← F ′ \ κ
9: until sat

10: return K

A potentially large set of cores can be found without needing to calculate
hitting sets. One way to accomplish this is outlined in Algorithm 10, which
finds a disjoint set of cores [38]. After finding a core κ, we can remove every
clause in κ from the working formula F ′, and use the SAT solver to find a
new core in the reduced formula. If another core is found, it will have no
overlap with the previous core, and the process can be repeated. Once no
more cores are found in the remaining formula, a maximal set of disjoint cores
has been found. Beyond saving IP solver calls, this method is comparatively
inexpensive as it reduces the size of the formula that must be refuted after
every found core. The cores found are also effective at increasing a lower
bound for the optimal solution because they are disjoint. The minimum-cost
hitting set must hit a unique clause for each core, so each disjoint core will
increase the know lower bound for the instance. It is also more likely that
unfound cores will be implicitly hit because the size of a minimum-cost
hitting set is equal to the number of sets when the sets are disjoint. This
initial phase is also computationally efficient because finding a minimum-cost
hitting set for a disjoint set of cores is trivial. For example, the weighted
partial MaxSAT instance of Section 3.2,

Fh = (x1 ∨ x2) ∧ (¬x1 ∨ x2),
Fs = (x1 ∨ ¬x2, 2) ∧ (¬x1 ∨ ¬x2, 3) ∧ (x1, 4) ∧ (x2, 4) ∧ (¬x1, 2),

21

has a maximal disjoint set of cores {{(x1,¬x2), (¬x1,¬x2)}, {(x1), (¬x1)}}.
The minimum cost hitting set for these cores, {(¬x1), (x1,¬x2)}, gives a
lower bound of 4 for the solution. Other cores for the instance, such as
{(x1,¬x2), (¬x1)} or {(¬x1,¬x2), (x1)}, all overlap with a core in this disjoint
set.

3.5.2 Assumption variable equivalences

Relaxing the original MaxSAT instance with assumption variables as de-
scribed in Section 3.3 adds new structure to the formula. Various ways of
extracting constraints usable in IP solving from this relaxed formula were ex-
plored in [38]. We examine the most successful of these methods, assumption
variable equivalences. Consider for example a MaxSAT instance containing
the clauses

Fh = (x1 ∨ ¬x2 ∨ x3) ∧ · · ·
Fs = (x1) ∧ (x2) ∧ (¬x3) ∧ · · ·

(5)

We augment the soft clauses with fresh assumption variables to get clauses

FS′ = (x1 ∨ a1) ∧ (x2 ∨ a2) ∧ (¬x3 ∨ a3) ∧ · · · (6)

In the context of an optimal solution produced by Algorithm 5, it also
implicitly holds that (¬x1 ∨ ¬a1), (¬x2 ∨ ¬a2), and (x3 ∨ ¬a3). To see that
this is the case, recall that each assumption variable ai is found in exactly
one clause of Fh ∪ FS′ . A value is assumed for every ai for any SAT solver
invocation. If we assume ai = 1, it is because a minimum-cost hitting set H
contains ai. A minimum-cost hitting set is also minimal in size, so for every
ai ∈ H it must hold that the soft clause Ci corresponding to ai cannot be
satisfied given the assumptions {aj = 0 : aj /∈ H}. In other words ¬Ci → ai,
which gives us (¬x1 ∨ ¬a1), (¬x2 ∨ ¬a2), and (x3 ∨ ¬a3).

Together with these implicit constraints, the clauses of Equation 6 now
give us equivalences (x1 ↔ ¬a1), (x2 ↔ ¬a2), and (x3 ↔ a3). It follows that
the hard clause (x1 ∨ ¬x2 ∨ x3) is equivalent to (¬a1 ∨ a2 ∨ ¬a3). This new
clause contains only assumption variable literals, and as such can be used by
the IP solver to constrain the search for minimum-cost hitting sets.

3.6 Core minimization

The unsatisfiable cores produced by a SAT solver are not necessarily minimal.
In other words, for a core κ, it could be the case that some κ′ ⊂ κ is also a
core. Recall that a core κ for which no such κ′ ⊂ κ exists is called a minimal
unsatisfiable subset or MUS of the instance. In this section we review ways of
minimizing or reducing the size of found cores in MaxHS. Any core which is
not a MUS can potentially increase the number of minimum-cost hitting sets
the algorithm needs to compute. If κ is included in the hitting set problem

22

but κ′ is not, then the IP solver can find a solution H for which H ∩ κ′ = ∅.
This ensures that F \H is not an optimal solution for the MaxSAT instance,
and hence further iterations of the algorithm are required.

To further motivate this search for smaller cores, consider as an example
the weighted MaxSAT instance

(¬x1∨x2, 7)∧(¬x1∨¬x2, 8)∧(x1∨¬x2, 7)∧(x1∨x2, 3)∧(x1, 3)∧(x2, 3). (7)

We refer to the clauses of Equation 7 as c1, . . . , c6 for convenience. As a
worst case, consider how the search of Algorithm 5 could proceed if the SAT
solver finds maximal cores in Table 2. The table shows the sequence of cores
and minimum-cost hitting sets found by iterations of the algorithm. A dash
(−) is used to denote that no core was found and F \H is satisfiable.

Iteration Core MCHS MCHS cost
1 {c1, c2, c3, c4, c5, c6} {c6} 3
2 {c1, c2, c3, c4, c5} {c5} 3
3 {c1, c2, c3, c4, c6} {c4} 3
4 {c1, c2, c3, c5, c6} {c5, c6} 6
5 {c1, c2, c3, c4} {c4, c6} 6
6 {c1, c2, c3, c5} {c4, c5} 6
7 {c1, c2, c3, c6} {c1} 7
8 {c2, c3, c4, c5, c6} {c3} 7
9 {c1, c2, c4, c5, c6} {c2} 8
10 − {c2} 8

Table 2: MaxHS algorithm execution with maximal cores.

Here Algorithm 5 must find nine minimum-cost hitting sets before an
optimal MaxSAT solution to Equation 7 is found. To contrast this behavior,
Table 3 shows an execution of the algorithm when MUSes are found instead.
In this case, the same optimal solution is found after computing only three
minimum-cost hitting sets.

Iteration MUS MCHS MCHS cost
1 {c1, c2, c3, c4} {c4} 3
2 {c1, c2, c5} {c4, c5} 6
3 {c2, c3, c6} {c2} 8
4 − {c2} 8

Table 3: MaxHS algorithm execution with minimal cores.

Every core (MUS) of Table 3 is a subset of multiple cores of Table 2.
In essence, these smaller cores give stronger constraints for the hitting set
problem, reducing the search space. Because the hitting set problem grows

23

with each iteration of the MaxHS algorithm, it becomes especially important
to keep its size manageable on more difficult instances. Reducing core size
achieves this both by limiting the number of cores that are required to find
an optimal solution, and by producing smaller IP constraints in the MCHS
formulation.

3.6.1 Re-refuting cores

A computationally inexpensive method of reducing core sizes in MaxHS,
introduced in [37], is outlined in Algorithm 11. It exploits the fact that,
depending on its state, a SAT solver might not produce the same core on
consecutive calls even if the core is still present in the second instance. After
finding a core κ in F \ H, the solver can be invoked again to refute the
unsatisfiable subformula Fh ∪ κ. This has the potential to produce a smaller
core κ′ ⊂ κ. If such a subset κ′ is found, the process can then naturally be
repeated on Fh ∪ κ′ to try to further reduce core size. The extent to which
this technique can reduce cores is heavily dependent on the behavior of the
SAT solver. The solver can be pushed to explore different areas of the search
space in various ways, for example by removing learned clauses or changing
variable decision heuristics (e.g., VSIDS scores [90]), to aid it in finding a
different explanation for the unsatisfiability of Fh ∪ κ.

Algorithm 11 Reducing the size of a core by re-refutation.
1: function ReRefuteCore(Fh, κ)
2: repeat
3: s← |κ|
4: (sat, κ′, τ)← SolveSAT(Fh ∪ κ)
5: if |κ′| < |κ| then κ← κ′

6: until s = |κ|
7: return κ

3.6.2 Finding minimal cores

It is also possible to find cores which are minimal unsatisfiable subformulas
(MUSes) in an attempt to maximize the potential benefit of smaller core size.
The problem of finding a MUS M for a CNF formula F is DP-hard, as it
requires us to both show that M ⊆ F is unsatisfiable (in co-NP) and that
M \ {C} is satisfiable (in NP) for all C ∈M . Various algorithms for MUS
extraction have been proposed in recent years [81, 16, 14, 11, 91]. For MaxHS,
even a simple “destructive” MUS algorithm4, was shown to be effective in [38].
It was further suggested that the time spent on minimization is so small

4An algorithm which removes clauses from an initial MUS over-approximation as
opposed to adding them to an under-approximation

24

Algorithm 12 A simple destructive MUS algorithm.
1: function MinimizeCore(Fh, κ)
2: mus← ∅
3: for all C ∈ κ do
4: κ← κ \ {C}
5: sat← SolveSAT(Fh ∪ (mus ∪ κ))
6: if not sat then
7: mus← mus ∪ {C}
8: return mus

that more involved MUS algorithms are unlikely to have a significant impact
on solving time. Algorithm 12 gives an example of this type of destructive
MUS algorithm. Given a core κ for a partial MaxSAT instance (Fh,Fs), we
can try to reduce its size by checking the satisfiability of Fh ∪ (κ \ {C}) for
some C in κ. If the formula is satisfiable, some MUS which is a subset of κ
contains C. These clauses are gathered into a set mus by Algorithm 12. On
the other hand, if Fh ∪ (κ \ {C}) is unsatisfiable, C is redundant and can be
discarded.

Complete core minimization in this manner can dramatically increase the
number of SAT solver calls. This has the potential to increase solving times,
but it was empirically shown in [36] that this minimization has a significant
overall positive effect. Beyond the positive effect on the IP constraints
produced, the SAT solver calls produced by minimization are also typically
on smaller subformulas (Fh ∪ κ) than those used to derive the initial core
(Fh∪ (Fs \H)). Complete minimization can be detrimental if the cores of the
MaxSAT instance are very large. In the worst case, even one of these “faster”
SAT solver invocations can take exponential time. However, in practice such
instances seem to be rare.

4 Re-implementing MaxHS
In order to more thoroughly understand MaxHS, the algorithm was re-
implemented from scratch as part of this work. We call the resulting MaxSAT
solver LMHS. In this section we compare it to existing solvers and use it
to study the behavior of the MaxHS algorithm. LMHS also enabled the
implementation of some extensions to the algorithm, which are covered in
Section 5.

4.1 The LMHS Solver

Our re-implementation of MaxHS, LMHS, is implemented in C++ using
standard library data structures. It can be used as a standalone solver, or as

25

a library through its C and C++ APIs. Like the original MaxHS solver5, the
re-implementation has been primarily developed using CPLEX [57] as an IP
solver and MiniSat [44] as the SAT solver. However, we also accommodate
the use of other SAT and IP solvers.

The implementation of LMHS differs in some key aspects from the original
MaxHS solver. Perhaps the most important is its focus on modularity,
allowing other IP or SAT solvers to be integrated into LMHS with little
effort. We demonstrate this modularity by evaluating the performance of
different solvers within the MaxHS algorithm in Section 4.3. We do not
currently implement a model rotation [81] style minimal core extraction
algorithm, as the simple destructive procedure of Algorithm 12 has proven
to be very effective for LMHS. In LMHS we fix a value for every assumption
variable on all SAT solver calls. We limit the generation of so-called non-core
constraints to the equivalences of Section 3.5.2. We also do not explicitly
encode the equivalence between a soft clause and its assumption variable in
the formula. As noted in Section 3.5.2, this equivalence holds implicitly.

The LMHS solver was recently entered in the 2015 MaxSAT Evaluation6,
where it solved the most weighted partial MaxSAT instances in the crafted
and industrial categories among non-portfolio solvers. The source code for
the solver is made available at https://github.com/psaikko/LMHS.

4.2 Evaluating non-optimal hitting set strategies

Section 3.4 covered several methods for computing non-optimal hitting sets.
In this section, we evaluate their effectiveness on a large set of benchmark
instances. The strategies evaluated include the greedy hitting set algorithm,
incremental hitting sets, and their combination.

The simplest non-optimal hitting set strategy “+1” creates a new hitting
set by adding the most common clause (among all found cores) to an existing
hitting set. The “greedy” strategy implements the greedy procedure of
Algorithm 4, and “+1,g” implements Algorithm 9, combining “+1” and
“greedy” in a two-phase approach. We also consider how search is affected by
incrementally adding more clauses than necessary to the hitting set. The
“+k%” strategies add k percent of the most common clauses (again, among
all found cores) in a new core to an existing hitting set to create the new
non-optimal hitting set. Intuitively, this could increase diversity among the
cores found during each non-optimal phase by reducing overlap. In this sense,
“+1” permits a maximal amount of overlap and “+100%” permits no overlap
for cores found between optimal hitting sets. The “+100%” strategy causes
an entirely disjoint set of cores to be found at each iteration so we refer to it
as the “disjoint” strategy. Like “+1,g”, “disjoint,g” implements a two-phase
approach with the disjoint strategy and greedy algorithm.

5Available at https://github.com/fbacchus/MaxHS
6http://www.maxsat.udl.cat/15/

26

https://github.com/psaikko/LMHS
https://github.com/fbacchus/MaxHS
http://www.maxsat.udl.cat/15/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1100 1150 1200 1250 1300 1350

T
im

e
 (

se
c)

Instances solved

+1 : 1286
disjoint : 1315
+10% : 1253
+30% : 1283
+50% : 1292
+70% : 1302

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1100 1150 1200 1250 1300 1350

T
im

e
 (

se
c)

Instances solved

+1 : 1286
+1,g : 1289

disjoint : 1315
disjoint,g : 1336

greedy : 1263

(b)

Figure 2: A comparison of (a) overlapping of cores and (b) greedy hitting
set computations in the non-optimal hitting set strategies.

We evaluated the hitting set strategies on the entire set of 1710 partial
and weighted partial MaxSAT benchmark instances from the crafted and
industrial categories of the 2014 MaxSAT Evaluation7. All experiments
reported on in this work (unless otherwise noted) were run on machines with
32 GB of memory and two Intel Xeon E5540 CPUs, with Ubuntu Linux
12.04. The computational resources for each instance were limited to 30 GB
of memory and one hour (3600 seconds) of CPU time. The solver did not
exceed the memory limit on any instances.

Figure 2 shows results in terms of per-instance timeouts over all 1710
instances. The vertical axis indicates the amount of time t in seconds given
to the solver per instance and the horizontal axis indicates the number of
instances solved. The plotted lines indicate, for each solver configuration,
the number of instances that took less than t seconds to solve for every t
from 0 seconds to the time limit of 3600 second. Figure 2a compares the
single-phase non-optimal hitting set strategies and shows an interesting result.
Decreasing the amount of overlap for cores found in a non-optimal hitting set
phase, we see an uniform increase in the number of instances solved from the
“+10%” strategy to the “disjoint” strategy. However, the “+1” strategy does
not follow this trend, performing better than the “+10%” strategy while
permitting more overlap between cores. Figure 2b shows the effect of adding
the greedy hitting set algorithm as a second phase to the non-optimal hitting
set computation. The difference between the “+1” and “+1,g” strategies

7http://www.maxsat.udl.cat/14/benchmarks/index.html

27

http://www.maxsat.udl.cat/14/benchmarks/index.html

is small, but “disjoint,g” solves more instances within the time limit than
either “disjoint” or “greedy”.

To underline the practical benefit of reducing overlap, Figure 3 illustrates
the difference between the “disjoint” and “+10%” strategies. We see in
Figure 3a that, almost without exception, the “disjoint” strategy results
in a very significant reduction in the number of cores needed to solve any
particular instance. Intuitively, this can be seen as the result of increased
diversity among the cores found in an iteration (i.e., an execution of the
main loop of Algorithm 5) of the algorithm. On the other hand, Figure 3b
shows that on average the “disjoint” strategy results in more iterations of
the algorithm, and by extension, more IP solver invocations. However, as
these IP solver invocations are on significantly smaller hitting set problem
instances due to the reduced number of cores found, the net result is a large
improvement in solver performance over the set of benchmark instances.

Figure 4 looks at the effect of the greedy phase by comparing the “disjoint”
and “disjoint,g” strategies. Figure 4a shows that the greedy phase increases
the number of cores needed to solve most instances. This negative effect
on the solving process does not explain the improvement in the number
of instances solved. Looking at the number of iterations needed to solve
the benchmark instances instances, however, we see a clear improvement.
The “disjoint,g” strategy results in much fewer iterations than the “disjoint”
strategy. In this case, the reduced number of iterations significantly outweighs
the somewhat larger number of cores required.

Figure 5 shows results for the comparison of non-optimal hitting set
strategies by instance category. It is clear that “disjoint,g” is the best
strategy, or among the best strategies, for every category shown. We also
note that there is very little difference made by the choice of non-optimal
hitting set strategy for crafted instances.

Table 4 shows results by instance family for some non-optimal hitting
set strategies of interest. While the “disjoint,g” strategy solves the most
instances overall, there are some families of instance for which it does not
solve the most instances. This suggests that a heuristic for choosing the
non-optimal hitting set strategy on a per-instance basis could result in a
more well-rounded solver. More concretely, “disjoint,g” solves 1336 instances
while a virtual best solver over the hitting set strategies of Table 4 (i.e., a
solver which could choose the best strategy for instance) would solve 1359.

4.3 Impact of IP and SAT solvers

An important feature of our LMHS solver is its modularity with regard to
its SAT and IP solver components. We have set a lightweight interface over
which LMHS interacts with these solvers so that they can be easily replaced.
This replacement process consists of implementing a small interface class
which gives LMHS access to the required functionality of the SAT or IP

28

 10

 100

 1000

 10 100 1000

d
is

jo
in

t

+10%

Cores

(a)

 1

 10

 100

 1000

 1 10 100 1000

d
is

jo
in

t

+10%

Iterations

(b)

Figure 3: The effect of reducing overlap on (a) the number of cores required
to solve an instance and (b) the number of iterations until an optimal solution
is found.

 10

 100

 1000

 10 100 1000

d
is

jo
in

t

disjoint,g

Cores

(a)

 1

 10

 100

 1000

 1 10 100 1000

d
is

jo
in

t

disjoint,g

Iterations

(b)

Figure 4: The impact of the greedy phase on (a) the number of cores required
to solve an instance and (b) the number of iterations until an optimal solution
is found.

29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 240 260 280 300 320 340

T
im

e
 (

se
c)

Instances solved

Weighted Partial Industrial

+1 : 305
+1,g : 305

disjoint : 333
disjoint,g : 333

+10% : 321
greedy : 331

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 140 160 180 200 220

T
im

e
 (

se
c)

Instances solved

Weighted Partial Crafted

+1 : 221
+1,g : 231

disjoint : 221
disjoint,g : 229

+10% : 222
greedy : 223

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 250 300 350 400 450

T
im

e
 (

se
c)

Instances solved

Partial Industrial

+1 : 425
+1,g : 421

disjoint : 427
disjoint,g : 438

+10% : 377
greedy : 379

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 240 260 280 300 320 340

T
im

e
 (

se
c)

Instances solved

Partial Crafted

+1 : 335
+1,g : 332

disjoint : 334
disjoint,g : 336

+10% : 333
greedy : 330

Figure 5: Comparison of results by instance category.

30

+1 disjoint disjoint,g
Instance family Solved Time (s) Solved Time (s) Solved Time (s) Total
Partial 760 966515 761 974010 774 940325 989
Crafted 335 331275 334 338202 336 332000 421
frb 15 43250 15 43248 15 43246 25
job-shop 3 866 3 881 3 877 3
maxclicque 134 94147 134 94148 134 94125 158
maxone 140 753 140 761 140 753 140
min-enc 8 126614 7 131658 9 127793 42
pseudo 4 12 4 12 4 12 4
reversi 31 47633 31 49494 31 47194 44
scheduling 0 18000 0 18000 0 18000 5
Industrial 425 635240 427 635808 438 608325 568
aes 2 18622 2 18625 2 18639 7
atcoss 22 57950 23 57376 23 57378 37
bcp 144 191403 131 238457 134 227798 188
circuit-trace-compaction 0 14400 0 14400 1 11018 4
close_solutions 24 106366 24 106194 24 106242 50
des 24 116809 36 83490 34 92749 50
haplotype-assembly 5 3656 5 3646 6 3176 6
hs-timetabling 1 3606 1 3606 1 3606 2
mbd 42 27313 42 26266 43 27369 46
packup-pms 40 327 40 322 40 386 40
pbo 65 2906 65 1289 65 2467 65
protein_ins 2 36017 2 36031 4 30552 12
tpr 54 55865 56 46106 61 26945 61
Weighted Partial 526 766935 554 663066 562 643972 721
Crafted 221 331703 221 332069 229 309356 310
CSG 10 98 10 80 10 81 10
auctions 40 1 40 1 40 1 40
frb 24 43076 24 43184 24 43162 34
min-enc 74 227 74 257 74 197 74
pseudo 3 32445 3 32439 3 32427 12
ramsey 1 50403 1 50403 1 50403 15
random-net 32 193 32 407 32 161 32
set-covering 36 36052 36 36082 36 36120 45
wmaxcut 1 169208 1 169216 9 146804 48
Industrial 305 435232 333 330997 333 334616 411
haplotyping-pedigrees 56 200961 83 101641 83 101612 100
hs-timetabling 2 45217 2 45194 3 45201 14
packup-wpms 100 1099 100 946 100 673 100
preference_planning 28 5310 28 5163 28 4799 29
timetabling 7 74114 7 71274 6 75063 26
upgradeability-problem 100 513 100 511 100 512 100
wcsp 12 108018 13 106268 13 106756 42

Table 4: Instances solved (time spent) for families of benchmark instances
with different non-optimal hitting set techniques.

31

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Li
n
g

e
lin

g
 /

 C
P
LE

X

MiniSat / CPLEX

SAT Comparison

(a)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

M
in

iS
a
t

/
S

C
IP

MiniSat / CPLEX

IP Comparison

(b)

Figure 6: A comparison of per-instance solving times for (a) SAT and (b) IP
solvers within LMHS.

solver component. In this section we examine the performance of LMHS
with different solver components. Specifically, we test the MiniSat 2.2 [44]
and Lingeling ayv [23] SAT solvers, and the IBM CPLEX 12.6.0 [57] and
SCIP 3.0.1 [2] IP solvers.

The LMHS solver was developed and tested largely using the MiniSat and
CPLEX solvers. To illustrate the flexibility of this modular implementation,
we chose two dissimilar SAT and IP solvers to test. The Lingeling SAT
solver was chosen for its strong performance in recent SAT competitions8,
its inprocessing techniques, and the fact that unlike other successful solvers
(e.g., glucose [8]) it is not based on MiniSat. The SCIP solver was chosen
because it is non-commercial software.

Figure 6 gives a quick comparison of SAT and IP solver performance.
Since the techniques and heuristics within LMHS have been chosen based
on performance with MiniSat and CPLEX, it would be disingenuous to
compare these components purely on the number of instances solved. For
that reason, we compare solving times on a per-instance basis in Figure 6.
We evaluated the SAT and IP solver components on the entire set of 1710
partial and weighted partial MaxSAT benchmark instances from the crafted
and industrial categories of the 2014 MaxSAT Evaluation.

Figure 6a compares MiniSat and Lingeling. While using LMHS with
Lingeling results in a significantly larger number of unsolved instances, there
are also many instances which it solves faster as well as instances which

8www.satcompetition.org

32

www.satcompetition.org

are solved using Lingeling but not MiniSat. This suggests that it would be
beneficial to investigate if Lingeling performs better in LMHS with different
solving techniques or heuristics. It would also be interesting to identify if
there are specific classes or families of instances which are more effectively
solved using Lingeling. In contrast, Figure 6b shows that SCIP performs
uniformly worse than CPLEX as the IP solver component.

4.4 Solver comparison

To conclude this section, we compare LMHS to other publicly available
state-of-the-art MaxSAT solvers. We evaluate LMHS with the best non-
optimal hitting set strategy of Section 4.2, “disjoint+g”, using the best solver
components of Section 4.3, MiniSat and CPLEX. Once again we used the
set of 1710 partial and weighted partial MaxSAT benchmark instances from
the crafted and industrial categories of the 2014 MaxSAT Evaluation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 600 700 800 900 1000 1100 1200 1300

T
im

e
 (

se
c)

Instances solved

CPLEX : 1001
eva500a : 1325

MaxHS 2.5 : 1316
OpenWBO : 1256

LMHS : 1336

Figure 7: Solver performance on partial and weighted partial instances.

We use the CPLEX solver to test solving MaxSAT by reformulating
instances as integer programming problems. The IP reformulation of Al-
gorithm 4 is used. We also include eva500a [92], which solved the most
industrial weighted partial MaxSAT problems in the 2014 evaluation. We
compare also LMHS to MaxHS 2.59, the latest publicly available implemen-
tation of the MaxHS algorithm from the original authors at the time of

9http://www.maxhs.org/

33

http://www.maxhs.org/

writing. OpenWBO 1.3.1 [87], a top solver for industrial partial MaxSAT
problems is also included in the comparison. We test OpenWBO in its default
configuration, with MiniSat as the underlying SAT solver.

Figure 7 shows instances solved at different time intervals over all the
test instances. It illustrates that LMHS is a robust general purpose MaxSAT
solver for both partial and weighted partial MaxSAT problems, solving the
most problems overall. We also show that LMHS outperforms MaxHS2.5
without significant extensions to the algorithm. To further differentiate the
solvers, we split the results by weighted and weighted partial instances as
well as industrial and crafted instances in Figures 8 and 9.

We can make some interesting observations from Figure 8 and Figure 9.
Firstly, while LMHS is competitive across the entire set of instances, it is
especially effective for weighted partial MaxSAT problems. Another notable
result is that while CPLEX performs poorly on the whole benchmark set, it
performs especially well on instances in the crafted category.

5 Extensions
In this section we investigate various extensions to the MaxHS algorithm
and empirically evaluate their effectiveness. Firstly, Section 5.1 looks at
improving the efficiency of core extraction in MaxHS using a technique of
assumption shuffling in the underlying SAT solver to produce multiple cores
from a single conflict. Section 5.2 explores ways of parallelizing MaxHS
using randomization of heuristic values and partitioning of soft clauses.
Section 5.3 investigates the use of external propagators with the MaxHS
algorithm, with graph acyclicity constraints as a case study. Section 5.4 gives
an overview of the assumption variable reuse technique introduced in [20].
Finally, Section 5.6 introduces the incremental API of our solver, LMHS.

5.1 Fast core extraction through CDCL conflict analysis

In this section we investigate a simple technique for generating additional
cores in a CDCL solver in polynomial time. By re-propagating assumptions in
a different order after a conflict has been found, new sources of unsatisfiability
could be found within the conflict produced by the CDCL search. We evaluate
the effectiveness of this technique in isolation, as well as in conjunction with
the other techniques discussed in Section 3.

The algorithm proceeds exactly as Algorithm 6 until the satisfiability of
F under the assumptions A is determined. If F is satisfiable under A, the
algorithm reports “Satisfiable” and returns a satisfying assignment. We note
that like in Algorithm 6, UndoDecisions procedure cannot remove any
assumptions A from D, so unsatisfiability has been determined if a conflict
is found when |D| = |A|. At this point a core is found, and the algorithm
deviates from Algorithm 6. Rather than immediately terminating, the initial

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 300 350 400 450 500 550

T
im

e
 (

se
c)

Instances solved

2014 Weighted Partial

CPLEX : 485
eva500a : 523

MaxHS 2.5 : 531
OpenWBO : 472

LMHS : 562

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 200 300 400 500 600 700 800

T
im

e
 (

se
c)

Instances solved

2014 Partial

CPLEX : 516
eva500a : 802

MaxHS 2.5 : 785
OpenWBO : 784

LMHS : 774

Figure 8: Results for benchmark instances on (a) weighted partial MaxSAT
and (b) partial MaxSAT.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500 600 700 800

T
im

e
 (

se
c)

Instances solved

2014 Industrial

CPLEX : 402
eva500a : 860

MaxHS 2.5 : 762
OpenWBO : 819

LMHS : 771

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 250 300 350 400 450 500 550 600

T
im

e
 (

se
c)

Instances solved

2014 Crafted

CPLEX : 599
eva500a : 465

MaxHS 2.5 : 554
OpenWBO : 437

LMHS : 565

Figure 9: Results for benchmark instances on (a) industrial and (b) crafted
instances.

35

Algorithm 13 Finding multiple cores with CDCL and assumption shuffling.
1: function ShuffleCDCL(F , A, k)
2: D ← A
3: K ← ∅
4: τ ← ∅
5: for i ∈ {1, . . . , k} do
6: while True do
7: (c, τ)← Propagate(F , D, τ)
8: if c contains a conflict then
9: if |D| = |A| then . conflict at base level

10: K ← K ∪AnalyzeFinalConflict(c)
11: D ← RandomPermutation(A)
12: τ ← ∅
13: else . learn a conflict clause
14: C ← AnalyzeConflict(c)
15: F ← F ∪ {C}
16: (D, τ)← UndoDecisions(D, τ, C) . backjump
17: else if τ(F) = 1 then
18: return Satisfiable, τ
19: else . make a new decision
20: Choose a variable x unassigned by τ
21: Make a decision for x: d← {x = 0} or d← {x = 1}
22: D ← D ∪ {d}
23: return RemoveRedundancy(K)

set of assumptions A is randomly permuted, or shuffled, and all propagated
assignments are discarded.

At this point the clauses learned by the CDCL procedure are still in
conflict with the set of assumptions A. This means that no further search,
decisions, or backjumping will occur on the subsequent iterations of the
loop of Line 5. On each of the iterations after the first, a conflict will be
produced purely by propagation, in polynomial time. However, even with no
further search, we may find a conflict which differs from the initial conflict
produced. The new conflict can in turn cause AnalyzeFinalConflict to
produce a new, distinct core. This is possible because the order in which
assumptions or assignments are propagated within CDCL is significant. In
essence, changing the order in which this propagation is performed can yield
different cores which describe different conflicting aspects of the conflicting
state of the CDCL procedure. This process is repeated k times (for some
fixed k) to gather multiple cores. The random nature of this approach means
that many of the cores generated may be redundant, so we remove duplicate
cores and supersets of cores within K as a final step. Further refinement can

36

also be done here, for example to remove cores which are too large or too
similar to other cores in K.

5.1.1 Experiments

We performed an experimental evaluation of the effectiveness of the assump-
tion shuffling technique for generating cores within LMHS. Shuffling and
non-optimal hitting sets fill a similar role in providing a relatively inexpensive
way to generate additional cores. To isolate the effect of shuffling, we first
compare it (with various refinements) to MaxHS without non-optimal hitting
sets. We then compare the best shuffling technique to the best non-optimal
hitting set strategy (as determined in Section 4.2) and evaluate the degree to
which they work in conjunction with each other. Experiments were run on
only the weighted partial MaxSAT benchmark set, with a 30 minute (1800s)
time limit.

Figure 10 compares different techniques for assumption shuffling. The
“no-nonopt” test shows the performance of the LMHS solver without any
non-optimal hitting set strategies. On the left, Figure 10a looks at results
for unconstrained shuffling. The “shuffle-k” techniques perform k shuffles
and use all unique cores found through shuffling (again, without non-optimal
hitting sets). The cores found through shuffling will naturally tend to be
similar as they are the product of some single conflict in the SAT solver.
Figure 10a also shows that no significant overhead is added by the shuffling
process, as the results for 5, 10, and 20 shuffles are nearly identical. These
results would then seem to show that the MaxHS algorithm does not benefit
from large amounts of similar cores, even if they are found at no extra cost.

Figure 10b evaluates different ways of limiting the number of found
cores used. We examine three of the best results: “shuffle-20-c2” performs
20 shuffles but only uses the two smallest cores, “shuffle-20-s2” likewise
performs 20 shuffles but takes only the smallest core and any cores of size
2 or smaller, and “shuffle-20-disj” takes only a disjoint set of cores. Each
of these constrained shuffling techniques clearly improves over the baseline
result of “no-nonopt”.

By Figure 10b alone, it would appear that the constrained shuffling
techniques are nearly identical. However, the solving times of individual
instances in Figure 10c show that the “shuffle-20-disj” and “shuffle-20-c2” can
exhibit different behavior. Finally, Figure 10d looks at the effect of shuffling
in conjunction with non-optimal hitting set techniques. We compare LMHS
without non-optimal hitting sets (“no-nonopt”) to LMHS (“LMHS”), LMHS
with shuffling but without non-optimal hitting sets (“shuffle”), and LMHS
with shuffling (“LMHS+shuffle”). Although shuffling alone improves the
performance of LMHS, we do not see any significant improvement when it
is used in conjunction with non-optimal hitting sets. However, assumption
shuffling is not a MaxHS or MaxSAT specific technique and could result in

37

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 450 460 470 480 490 500 510 520 530 540

T
im

e
 (

se
c)

Instances solved

Unconstrained Shuffles

no-nonopt : 517
shuffle-10 : 509
shuffle-20 : 510

shuffle-5 : 510

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 450 460 470 480 490 500 510 520 530 540

T
im

e
 (

se
c)

Instances solved

Constrained Shuffles

no-nonopt : 517
shuffle-20-c2 : 530

shuffle-20-disj : 531
shuffle-20-s2 : 530

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600

sh
u
ffl

e
-2

0
-d

is
j

shuffle-20-c2

Solving Time (seconds)

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 460 480 500 520 540 560

T
im

e
 (

se
c)

Instances solved

Comparison with non-optimal hitting sets

no-nonopt : 517
LMHS : 552

shuffle : 531
LMHS+shuffle : 553

(d)

Figure 10: A comparison of (a) unconstrained and (b) constrained shuffling
techniques, per-instance solving times (c) for two similar constrained shuffling
techniques, and (d) a look into the overall effect of shuffling with LMHS.

38

improvements for core extraction in other contexts.

5.2 Parallelizing MaxHS

MaxHS also presents some new possibilities for parallelizing MaxSAT solving.
A sequence of SAT and IP solver calls gathers a set of cores K, which yields
an optimal solution. If we could efficiently perform this core extraction
in parallel on k threads, solving time could decrease by a factor of k on
families of instances for which MaxHS uses most of its time in SAT solving.
Such instances seem to exist, and methods such as non-optimal hitting set
strategies and core minimization further reduce the portion of time used for
IP solving [39].

We would like to be able to parallelize this core extraction by simply
invoking k instances of the SAT solver on Fh ∪ (Fs \H) in parallel at each
iteration. However, this is potentially inefficient as instances of a SAT solver
invoked on the same formula are likely to find identical cores. It may be
possible to reduce the number of these duplicate cores found by heuristic
methods such as initializing each solver with different VSIDS scores to guide
them to different areas of the search space.

In this section we explore parallelizing MaxHS in two ways. We test a
simple parallelization method which runs k instances of a SAT solver in par-
allel with randomized VSIDS scores. We also experiment with parallelization
by partitioning the soft clauses of a partial MaxSAT instance.

5.2.1 Partitioning

One way of eliminating the issue of duplicate cores involves partitioning Fs
into sets of soft clauses P1, . . . , Pk. The SAT solvers can then be invoked
in parallel on the subformulas Fh ∪ (Pi \H). If the partitions Pi are non-
overlapping, any cores found in the subformulas Fh ∪ (Pi \ H) are also
guaranteed to be non-overlapping for a given iteration. The hitting set H
prevents us from finding duplicate cores between iterations.

Partitioning of soft clauses in MaxSAT has been recently explored in
other contexts. Some examples of partitioning strategies include weight-based
partitioning, hypergraph-based partitioning, and resolution-based partition-
ing. A simple weight-based partitioning strategy [86] would group together
clauses with similar weights. Hypergraph-based partitioning [86] interprets
the soft clauses as a hypergraph with clauses as nodes and variables as
hyperedges, and applies some standard hypergraph partitioning algorithm.
The recent resolution-based partitioning technique has been shown to im-
prove the performance of a SAT-based MaxSAT solver [93] even without
parallelization. Besides a partitioning strategy, we must also consider the
relative sizes of the partitions, whether or not they overlap, and how to
create unique partitionings at each iteration.

39

Algorithm 14 Parallelizing core extraction in MaxHS.
1: function ParallelMaxHS(Fh,Fs, c, k)
2: K ← ∅, H ← ∅
3: FC ← ∅, C←∞
4: while true do
5: P1, . . . , Pk ← Partition(Fs \ FC)
6: for i ∈ {1, . . . , k} do in parallel
7: FSi ← (FC ∪ Pi) \H
8: (sati, κi, τi)← SolveSAT(Fh ∪ FSi)
9: if sati and c(τi) < C then

10: FC ← FSi
11: C← c(τi)
12: else
13: K ← K ∪ {κi}
14: if no new cores were found then
15: (sat, κ, τ)← SolveSAT(Fh ∪ (FS \H))
16: if not sat then K ← K ∪ {κ}
17: else return τ
18: H ← SolveMCHS(K, c)

We would like for a partitioning strategy to create a large number of
unsatisfiable partitions. If a partition is unsatisfiable, it will yield a core which
refines the next hitting set, and the algorithm will make progress. Larger
partitions are more likely to contain cores, but the choice of partitioning
strategy could be important as well. We would also like to gain some
knowledge from partitions which are satisfiable, even if they do not directly
contribute any cores.

We must also guarantee that an optimal solution will be found. For
example, if we partition m clauses into k non-overlapping partitions of equal
size, any optimal solution that satisfies more than m/k soft clauses will not
be found. To avoid this, we could decrease k over time such that eventually
only a single partition which contains all of Fs remains, but this has the
disadvantage of reducing the amount of parallelization. The partition-based
solver of [93] gradually merges the initial partitions together so that eventually
the entire formula is solved, but intuitively this approach too would reduce
the impact of parallelization.

With these considerations, we propose Algorithm 14, which creates over-
lapping partitions which do not share any unsatisfiable cores. Algorithm 14
parallelizes the core extraction of MaxHS using partitioning. Line 3 initializes
the satisfiable subset of soft clauses FC its cost C. A potentially interesting
modification to the algorithm is to reset FC before every iteration. At the
start of the main loop, Line 5, the clauses Fs \ FC are split into into k

40

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 360 380 400 420 440 460 480 500

T
im

e
 (

se
c)

Instances solved

Randomization

r2 : 499
r4 : 502
r8 : 500

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

r8

r4

Cores per Iteration

(b)

Figure 11: Comparing (a) the number of instances solved by parallel solvers
“rk” and (b) the average number of unique cores found per iteration.

non-overlapping partitions. Instances of a SAT solver are then invoked in
parallel (Line 7) on the subformulas Fh ∪ ((FC ∪ Pi) \H). The overlap in
the subformulas is restricted to a set of soft clauses, FC, which has been
identified as satisfiable, eliminating the possibility of two solvers finding
duplicate cores on the same iteration. Line 9 updates the satisfiable set of
soft clauses FC and its cost C. As FC grows, we approach the situation of
invoking SAT solvers in parallel on the entire formula. When all partitions for
an iteration are satisfiable, Line 14 checks the satisfiability of Fh ∪ (Fs \H),
the MaxHS termination condition. If the check fails, a new core is found and
the algorithm resumes. Otherwise an optimal solution has been found.

5.2.2 Experiments

We perform an experimental evaluation of the parallelization techniques
explored in Section 5.2. Experiments were performed on the set of 2014
MaxSAT evaluation weighted partial instances with a time limit of 15 minutes
(900 seconds). As before, the experiments were run on machines with 32 GB
of memory and two Intel Xeon E5540 CPUs, for a total of eight physical
CPU cores per machine.

We first examine the performance of the randomized approach in Figure 11.
Here “rk” denotes that k instances of the SAT solver are run in parallel, each
with randomized VSIDS variable decision heuristic scores. In Figure 11a we
see no visible improvement by adding parallel solvers using this heuristic value
randomization. However, this lack of improvement cannot be attributed to a

41

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400

r8

r4

IP Calls

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

r8

r4

Cores Found

(b)

Figure 12: Comparing the (a) the number of iterations and (b) the number
of cores required to solve instances for “r4” and “r8”.

failure of the randomization to produce different cores on the concurrently
run SAT solvers. Figure 11b shows the average number of distinct cores
found per iteration for the test instances. Doubling the number of concurrent
solvers from four to eight also roughly doubles the number of cores found
per iteration.

Figure 12 provides a partial explanation for the results. While the number
of cores found per iteration tends to double from “r4” to “r8”, Figure 12a
shows that the number of iterations (IP solver calls) is not correspondingly
cut in half. It follows that there must be an increase in the number of total
cores found, as seen in Figure 12b. This combination of fewer iterations
with a larger set of cores seems to result in virtually identical performance
overall for “r4” and “r8”. It remains an interesting question to characterize
the underlying cause of the MaxHS algorithm’s apparent “resistance” to this
method of parallelization.

Next, we evaluate the effectiveness of Algorithm 14. Figure 13a shows
the change in the number of instances solved as we increase the number k of
partitions and concurrently run solvers. Here “pk” indicates that k solvers
are run on k partitions. These tests are run without an initial disjoint phase
or non-optimal hitting set strategies to better isolate the effect of partitioning
and parallelization. A very simple partitioning scheme in which soft clauses
are evenly divided into k partitions based on their order in the instance file
is used. Furthermore, we do not run the IP solver with multiple threads.

We see improvement in the performance of the algorithm as k increases.

42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 400 420 440 460 480 500 520 540

T
im

e
 (

se
c)

Instances solved

Partitioning

p16 : 544
p2 : 520
p4 : 528
p8 : 540

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 420 440 460 480 500 520 540

T
im

e
 (

se
c)

Instances solved

Partitioning

p8 : 540
p8l : 545

p8ls : 540
p8n : 505

(b)

Figure 13: An overview of the performance of parallelization by partitioning.

Interestingly, this effect persists between “p8” and “p16” although the tests
were run on machines with only eight physical CPU cores. This suggests that
the partitioning itself is at least in part responsible for these improvements,
as running 16 solvers concurrently on eight CPU cores does not seem likely
to have a positive effect on solving times.

Figure 13b shows several additional results. We first note that a naïve
implementation “p8n” of non-optimal hitting sets—in which each concurrent
SAT solver performs its own non-optimal phase—is detrimental to the per-
formance of Algorithm 14. We also evaluate “p8l”, a variant of Algorithm 14
which picks a new FC on every iteration. This results in a small, but consis-
tent, improvement over “p8”. Finally, Figure 13b compares “p8l” with its
sequential execution “p8ls”. Here we see that the effect of parallelization is
relatively small, which again suggests that even the simple partitioning of
soft clauses has a beneficial effect.

To further compare “p8l” and “p8ls”, Figure 14a shows solving times on
individual instances. Here we see that although the number of additional
instances solved is fairly small, there is a consistent improvement in solving
time, especially among instances taking longer than 200 seconds to solve.
Figure 14b motivates the effectiveness of partitioning, comparing the average
core size solved instances between LMHS and “p8l”. We see that especially
among instances with large cores on average, “p8l” finds cores which are
significantly smaller than those found by LMHS.

Figure 15 compares Algorithm 14 to LMHS with (“LMHS”) and without
(“no-nonopt”) non-optimal hitting sets. We see an overall improvement on

43

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900

p
8

ls

p8l

Solving Time

(a)

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

LM
H

S

p8l

Average Core Size

(b)

Figure 14: Comparing (a) the solving time of “p8l” to its sequential execution
and (b) the average core size on instances for “p8l” and LMHS.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 400 420 440 460 480 500 520 540

T
im

e
 (

se
c)

Instances solved

Partitioning

no-nonopt : 498
LMHS : 534

p8l : 545
p8ls : 540

Figure 15: Evaluating Algorithm 14 by comparison to LMHS.

44

LMHS by both “p8l” and its sequential execution “p8ls”. We note that
this improvement is achieved without non-optimal hitting sets or a disjoint
phase. Comparing “p8l” to “no-nonopt”, we see a significant increase in
the number of instances solved. This suggests that further improvements
could be seen by successfully integrating non-optimal hitting set strategies
with Algorithm 14. We also note that these tests used a very rudimentary
partitioning scheme. Further investigation of more sophisticated partitioning
strategies seems likely to yield results with MaxHS.

5.3 External propagators

The CDCL procedure (recall Algorithm 1) makes use of unit propagation
in its inference, but can be extended to utilize other types of constraint
propagation as well. This propagation need not necessarily be implemented
on the CNF level. In this section we investigate propagation based on external
constraints with the MaxHS algorithm.

As a motivating example, consider cardinality constraints of the form
x1 + · · · + xn ≤ k. Many different CNF encodings for these constraints
exist [6, 10, 5, 30, 45, 80] but even the most concise encodings require
a linear number of additional clauses and variables [104]. In contrast to
these encodings, the cardinality constraint could be enforced by a separate
propagator within a CDCL solver. Such a propagator could be implemented
as a counter which is incremented whenever xi = 1 is assigned for some i and
decremented when these assignments are undone by backtracking. Checking
whether x1 + · · ·+ xn ≤ k holds can then be done by simply checking the
counter. If x1 + · · · + xn = k − 1, then xi = 0 can be propagated for all
unassigned variables in x1, . . . , xn. Propagators of this nature can implicitly
fill the role of a large set of clauses [96], and have found use in satisfiability
modulo theories (SMT) solvers [102].

Any external propagator which is valid for SAT is valid for MaxHS.
However, it is not clear whether use of such propagators is useful within
MaxHS or MaxSAT solvers in general as the CNF formulas of MaxSAT
instances often tend to be (due to the difficulty of the optimization problem)
much smaller than those of SAT instances. MaxHS in particular solves a
sequence of SAT problems that tend to become easier to solve with each
iteration, which could reduce the impact of these propagators. It is also
unclear how the performance of clause learning is affected in practice by the
coupling of CDCL and external propagators. This section examines graph
acyclicity as a case study for implementing external propagators within
LMHS.

45

Algorithm 15 A propagator for acyclicity constraints [49].
1: function AcyclicityPropagator(x, f, (V,E))
2: if x does not enable an edge then return
3: (va, vb)← f−1(x)
4: let E′ be the set of edges e for which f(e) = 1.
5: let G′ be the subgraph of (V,E) induced by E′.
6: for each node v on a forward traversal of G′ from vb do
7: mark v
8: if v = va then
9: let e1, . . . , ek be the edges on path vb → va

10: C ← f(e1) ∨ · · · ∨ f(ek)
11: return with conflict clause C
12: for each node v′b on a backward traversal of G′ from vb do
13: for each edge e = (v′a, v′b) such that v′a is marked do
14: x′ ← f(e)
15: if x′ is unassigned then
16: let Ef be the set of edges on the path vb → v′a
17: let Eb be the set of edges on the path v′b → va
18: C ← ¬x ∨ ¬x′ ∨

∨
e∈Ef∪Eb

¬f(e)
19: based on C, propagate ¬x′

5.3.1 Acyclicity constraint propagation

We follow [49] in implementing acyclicity propagation for a SAT solver to
study the use of external propagators in conjunction with MaxHS. Acyclicity
propagation can be used if the problem to be solved is either directly a graph
problem, or has some underlying graph structure on which an acyclicity
condition must hold. Acyclicity constraint propagation also has applications
beyond graph acyclicity. For example, a set of variables {x1, . . . , xn} has
a partial order ≤ if and only if the graph with nodes x1, . . . , xn and edges
{(xi, xj) : xi ≤ xj} is acyclic. Potential applications include problems of
computing optimal tree or DAG structures and problems for which linear
orderings must be enforced, e.g., the NP-complete problem of finding an
optimal variable ordering for ordered binary decision diagrams [25].

We consider acyclicity in terms of a directed graph structure G = (V,E)
and a function f : E → X that maps each edge to some Boolean variable in
the CNF formula. The graph G and mapping f must be given to the SAT
solver as supplemental information. This information is used by the acyclicity
constraint propagator (Algorithm 15) to prevent variable assignments which
correspond to cyclic graphs.

Algorithm 15 is based on two traversals of the graph G. Whenever a literal
x corresponding to a graph edge ex = (va, vb) is propagated, the algorithm
checks if this edge causes a cycle given the current state of the graph and

46

whether any further assignments can be propagated. The algorithm first
traverses the graph forward from vb (Line 6), detecting any cycles caused by
the current variable assignment. If a cycle e1, . . . , ek, e1 is found, a conflict
clause consisting of the variables f(e1), . . . , f(ek) of the edges of the cycle is
returned. The second traversal (Line 12) searches the graph backwards (i.e.,
from a node vb to a node va along an edge (va, vb)), detecting unassigned
variables which could form a cycle. If an unassigned variable x′ which could
complete a cycle is found, we can propagate the assignment x′ = 0. This
propagation is done based on the implicit clause ¬x ∨ ¬x′ ∨

∨
e∈Ef∪Eb

¬f(e)
which would prevent the cycle.

5.3.2 Experiments

To test the effectiveness of the acyclicity constraint propagation, we imple-
mented it within MiniSat. This modified MiniSat was used within LMHS
to enable us to solve MaxSAT problems with external acyclicity constraints.
We applied this solver to the problem of bounded treewidth Bayesian net-
work structure learning (BTW-BNSL) [46]. We examine Bayesian network
structure learning in more detail in Section 6. A MaxSAT formulation for
BTW-BNSL was recently introduced [19]. We focus on this application
as the MaxSAT formulation, shown to be the best approach for optimally
solving BTW-BNSL problems [19], has two clear applications for acyclicity
propagation.

The exact MaxSAT formulation for BTW-BNSL is beyond the scope of
this work (see [19] for details), but we give a quick summary of the uses of
acyclicity propagation we experiment with. The straightforward application
of acyclicity propagation in the MaxSAT BTW-BNSL formulation is in
enforcing the acyclicity of the resulting DAG. The more indirect application
involves the treewidth encoding. More specifically, the treewidth encoding
requires enforcing a linear ordering for a set of variables. Acyclicity is enforced
in [19] with a level-based CNF encoding, which creates a polynomial number
of clauses and variables (in the size of this set of variables), which makes it
desirable to try to replace this encoding with an external propagator.

We experiment both with replacing the DAG structure acyclicity en-
coding (configurations labeled “DAG”) and replacing the treewidth linear
ordering encoding (configurations labeled “TW”) with the external acyclicity
propagation. We also test Algorithm 15 in LMHS both with and without
the second, backward graph traversal. Configurations which use only the
first traversal are labeled “Inc”, as they only detect inconsistencies. Configu-
rations which also perform propagation using the backward graph traversal
are labeled “Back”10. As benchmark instances we use data sets used in [19]
as well as standard BNSL benchmarks with treewidth restrictions for a total

10We use this labeling for consistency with [49].

47

 0

 5000

 10000

 15000

 20000

 25000

 10 15 20 25 30 35 40 45

T
im

e
 (

se
c)

Instances solved

Instances Solved

TW-Back : 35
DAG-Back : 12

TW-Inc : 36
DAG-Inc : 16

CNF Encoding : 32

Figure 16: A comparison of acyclicity propagation techniques.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

D
A

G
-I

n
c

TW-Inc

Acyclicity conflicts detected

(a)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

D
A

G
-B

a
ck

TW-Back

Acyclicity conflicts detected

(b)

Figure 17: Comparing instances solved by both “TW” and “DAG” with (a)
“Inc” and (b) “Back” propagators.

48

CNF Encoding TW-Inc
Instance TW2 TW3 TW4 TW2 TW3 TW4
Abalone 136.5 448.9 175.1 84.8 233.7 370.7
Heart - - 6329.3 5079.6 5507.9 6301.6
Hepatitis - - 17725.1 2772.9 2169.9 1907.8
Horse 1240.1 1678.1 1928.2 659.3 1300.3 677.1
Wine 149.0 42.8 48.7 40.5 48.9 35.6
Zoo 35.1 115.3 67.8 36.0 82.1 77.3
adult15N 1997.3 16384.3 7855.8 953.3 7171.7 3871.2
asia_10000 4.8 2.6 2.8 2.1 2.0 3.4
asia_1000 0.6 0.9 1.0 0.8 1.0 0.6
asia_100 0.1 0.1 0.0 0.1 0.1 0.1
hailfinder_1000 5384.4 1874.5 5889.0 519.6 595.4 779.0
hailfinder_100 22.7 32.5 33.1 14.7 22.0 21.9

Table 5: Solving times (in seconds) for solved BTW-BNSL instances.

of 63 test instances (21 instances each with treewidth bounds of 2, 3, or 4).
We obtained the benchmarks directly from the authors of [19].

Figure 16 shows the number of instances solved at different per-instance
timeouts. With our proof-of-concept implementation, we see an improve-
ment over the CNF encoding with acyclicity propagation on the treewidth
constraint. Interestingly, the “Back” configuration solves fewer instances
than the “Inc” configuration with both “TW” and “DAG” propagation.

When applying the external propagator to the DAG structure, we see
significantly worse results. Figure 17 provides some insight into this behavior.
For both the “Ìnc” and “Back” configurations, we see a significant increase
in the number of conflicts detected during solving. A potential cause for this
could be that we detect some smaller set of conflicts multiple times across
a number of SAT solver calls. LMHS forgets learned clauses between SAT
solver calls by default, but it may be beneficial to make an exception for
clauses learned from acyclicity conflicts. We could also see better results
from the “Back” configurations by explicitly storing the implicit clauses of
Algorithm 15 Line 18.

Table 5 gives more detailed results for the acyclicity propagation. We
show individual solving times for each instance, for different treewidths,
where TWk corresponds to a treewidth limit of k. Fields marked “-” denote
instances on which the solver exceeds the eight hour time limit. We see that
LMHS using acyclicity propagation with the treewidth constraint (“TW-Inc”)
solves a superset of the instances solved with the pure CNF encoding, and
typically solves these instances faster.

49

5.4 Reusing assumption variables

Although the MaxHS algorithm does increase the size of the CNF formula
during the solving process, some overhead is introduced by the assumption
variables added for each soft clause. In some cases, it is possible to reuse
variables already present in the instance to reduce this overhead. A simple
approach would identify a hard clause (C ∨ x) and a soft clause (¬x), where
the variable x appears only in these clauses. Here we can discard both
clauses, replacing them with a single soft clause (C ∨ x), and reusing x as
the assumption variable. However, such a pair of clauses is likely rare in
practice, as it is semantically identical to a single soft clause C.

A key observation [20] is that the MaxHS algorithm is sound even in
cases where an assumption variable is shared between clauses or a clause
contains more than one assumption variable. This means that any literal
l ∈ {x,¬x} which occurs only in a single unit soft clause (¬l) and some hard
clauses (C1 ∨ l), . . . , (Cn ∨ l) of an instance can be reused as an assumption.
In other words, with the exception of the single unit soft clause, occurrences
of x in the instance must have the same polarity. Clauses of this type occur
naturally in, e.g., encodings of group MaxSAT [55]. As we showed in [21],
such clauses are in fact common in standard benchmark instances.

A method for applying SAT preprocessing techniques to MaxSAT [17] also
produces variables which are suitable for reuse. Many SAT preprocessing
techniques, such as bounded variable elimination [42], are not sound for
MaxSAT on their own [17]. However, they can be made sound by introducing
a layer of auxiliary variables and forbidding their removal [17, 15]. Concretely,
prior to applying preprocessing, a new variable xi is introduced for each
each soft clause Ci. The original soft clause replaced with a hard clause
(Ci ∨ xi) and soft clause (¬xi), with the restriction that (¬xi) may not be
eliminated from the formula. This is essentially the reverse of the simple
assumption variable detection procedure discussed earlier. Crucially, each
of these new xivariables can be used as an assumption variable even after
applying preprocessing. With this observation, MaxHS need not add any
new assumption variables for preprocessed instances.

5.5 Experiments

We experimentally confirm the effectiveness of reusing assumption variables
in conjunction with preprocessing in LMHS. For preprocessing the MaxSAT
formulas, Coprocessor 2 [77] was used with the Boolean constraint prop-
agation, bounded variable elimination, failed literal elimination, probing,
self-subsuming resolution, and blocked clause elimination techniques (configu-
ration “[vpusb]+”). Experiments were performed on the set of 2014 MaxSAT
Evaluation weighted partial instances with a time limit of 30 minutes (1800
seconds). As before, the experiments were run on machines with 32 GB of

50

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 190 195 200 205 210 215 220 225 230

T
im

e
 (

se
c)

Instances solved

Crafted

LMHS : 226
LMHS+pre : 215

LMHS+pre+reuse : 228

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 260 270 280 290 300 310 320 330

T
im

e
 (

se
c)

Instances solved

Industrial

LMHS : 326
LMHS+pre : 322

LMHS+pre+reuse : 332

(b)

Figure 18: Evaluating assumption variable reuse on (a) crafted and (b)
industrial benchmark instances.

memory and two Intel Xeon E5540 CPUs. We compare LMHS without pre-
processing (LMHS) to LMHS with preprocessing (LMHS+pre) and LMHS
with preprocessing when reusing assumption variables (LMHS+pre+reuse).

Figure 18 splits the results of these experiments by crafted (left) and in-
dustrial (right) benchmark instances. We note that SAT-based preprocessing
alone does not result in a larger number of instances solved. In fact, its effect
is clearly detrimental on the crafted benchmark instances. For both crafted
and industrial instances, however, also reusing the variables created for
preprocessing sees a significant improvement over only using preprocessing.
For crafted instances this serves mostly to negate the detrimental effect of
preprocessing. For industrial instances, we see an overall improvement in
the number of instances solved.

For this work, we have only looked at reusing auxiliary variables created
by preprocessing. Other questions relating to SAT-based preprocessing for
MaxSAT remain. It could be worthwhile to identify problem domains which
benefit from preprocessing as well as investigating different combinations
of preprocessing techniques with MaxSAT solvers. Also of interest is the
application of preprocessing techniques during solving (inprocessing) for
other MaxSAT algorithms.

5.6 Incremental solving

In this section we consider incrementally solving MaxSAT problems. The
MaxHS algorithm can be extended to allow for new constraints to be added

51

to the MaxSAT instance after it has been solved. Our implementation
of MaxHS, the LMHS solver, includes this functionality and provides an
external API for its use. Incremental MaxSAT has practical uses in for
example model counting [52], as well as incremental problem refinement, as
detailed in Section 6.

5.6.1 Model enumeration

Algorithm 16 enumerates all optimal solutions to a MaxSAT instance. The
MaxHS algorithm is enclosed within the loop of Line 4. When the first
solution is found, Line 12 records its cost as the optimal cost. On subsequent
optimal solutions, Line 17 adds a single clause which forbids the current
optimal model. The termination condition of Line 13 will be met when all
optimal solutions (of which there are a finite amount) have been found.

Algorithm 16 Optimal model enumeration with MaxHS.
1: function Enumerate(Fh,Fs, c)
2: K ← ∅
3: H ← ∅
4: while true do
5: while true do
6: (sat, κ, τ)← SolveSAT(Fh ∪ (Fs \H))
7: if not sat then
8: K ← K ∪ {κ}
9: H ← SolveMCHS(K, c)

10: else
11: break
12: if opt is undefined then opt← cost(τ)
13: if cost(τ) > opt then
14: break
15: else
16: yield τ
17: Fh ← Fh ∪ {(

∨
{xi=1}∈τ ¬xi) ∨ (

∨
{xi=0}∈τ xi)}

The MaxHS algorithm also allows for a natural way of enumerating
unique solutions in terms of satisfied soft clauses. This can be accomplished
by simply replacing the refinement of F on Line 17 with adding the constraint∑
C∈H xC−

∑
C∈Fs\H xC < |H| to the hitting set IP (of Algorithm 4), followed

by a re-computation of the hitting set. Likewise, we could enumerate the k
best solutions by modifying the condition of Line 13 to only break after k
solutions have been found, regardless of their optimality.

52

5.6.2 LMHS API

The uses of this type of incrementality are not limited to simply enumerating
models. In fact, we can extend and constrain the working formula by adding
arbitrary clauses between iterations. LMHS implements this functionality
and provides an API for its use. An overview of this API follows.

• reset Resets the internal state of the MaxSAT solver, allowing a new
instance to be started.

• initialize Initializes the MaxSAT solver and its components. Three
variants of this method are offered. An instance can be initialized from
a file, from clauses in memory, or as an empty instance to be built
using the API.

• getNewVariable Requests a new variable from the internal SAT solver.

• addHardClause Adds a hard clause to the working MaxSAT instance.

• addSoftClause Adds a soft clause to the working MaxSAT instance.
This automatically internally creates a blocking variable for the clause.
This variable is returned by the function in case the user wishes
to make use of it. As a rule, the blocking variable created will al-
ways have a larger index number than the last variable created with
getNewVariable.

• addCoreConstraint If a subset of soft clauses is known to be unsatis-
fiable, it can be added as a core constraint using the blocking variables
of the soft clause. This can speed up the solving process.

• forbidLastModel Internally creates a SAT constraint forbidding the
previously found variable assignment.

• forbidLastSolution Internally creates an IP constraint forbidding
the previously found set of satisfied soft clauses.

• getOptimalSolution Optimally solves the current MaxSAT instance.

LMHS provides C++ and C library interfaces to access these functions.
In Section 6, we use this functionality to refine a formula between iterations
of the outer loop of Algorithm 16 based previous found solutions.

6 Applying incremental MaxSAT
This section presents an application of incremental MaxSAT and the LMHS
API to learning Bayesian network structure. Bayesian network structure
learning [32] is an NP-complete [28] optimization problem. The problem

53

has a MaxSAT representation [32], but we take a different approach, using
LMHS to incrementally solve subproblems within an existing integer linear
programming approach. This work has been published in [100].

6.1 Learning optimal Bayesian network structures

Let X = {x1, . . . , xn} be a set of nodes representing random variables and
let Pi = {Pi : Pi ⊆ X \ {xi}}. A candidate parent set of xi is a set Pi ∈ Pi.
Given a directed graph G = (X,E), the parent set of xi is the set of nodes
{xj : (xj , xi) ∈ E}, i.e., the set of nodes from which there exists a directed
edge to xi. Conversely, a choice of parent sets P1, . . . , Pn defines a graph
with edges {(xj , xi) : xj ∈ Pi}. If the resulting graph is acyclic (a DAG),
the choice of sets Pi defines a Bayesian network (BN) structure. Finally, we
have cost functions si : Pi → R+, which define a non-negative score for each
candidate parent set of each xi. The source of these scores is beyond the
scope of this work, but in essence they describe some fitness function for the
possible BNs with nodes X.

Given the preceding definitions, the problem of Bayesian network struc-
ture learning (BNSL) can be defined. The task in BNSL is to find a DAG
G∗ = (X,E) that minimizes the sum of the costs of the parent sets of
X = {x1, . . . , xn} defined by the graph, P1, . . . , Pn. More formally,

G∗ ∈ arg min
G∈DAGs(X)

n∑
i=1

si(Pi), (8)

where DAGs(X) is the set of all DAGs with nodes X, and Pi is the parent
set of xi defined by G. In practice, the size Pi is often limited in some way
as X \ {xi} has an exponential (in n) number of subsets.

We consider an IP formulation of BNSL based on the definition of BNSL
given by Equation 8. Utilizing the concept of parent sets and their cost
functions, we have

minimize
∑
xi∈X

∑
S∈Pi

si(S) · PSi (9)

subject to
∑
S∈Pi

PSi = 1 ∀i ∈ 1 . . . n, (10)

∑
xi∈X

∑
S∩C=∅

PSi ≥ 1 ∀C ⊂ X, (11)

PSi ∈ {0, 1} ∀i ∈ 1 . . . n, S ∈ Pi.

This formulation adds binary variables PSi which indicate that S is chosen
as the parent set of i. Equation 10 specifies that each node must have exactly
one parent set. The objective function is given in terms of these parent set
variables as Equation 9. The acyclicity of the graph is encoded as the cluster

54

constraints of Equation 11. Given any subset of nodes, or cluster, C of X,
these constraints state that at least one node xi ∈ C must have a parent set
with no nodes in C. Equivalently, this states that no C ⊂ X forms a cycle
in the graph specified by the assignments to the parent set variables PSi .

6.2 GOBNILP

GOBNILP [13, 33] implements a search algorithm for learning optimal
Bayesian networks within the SCIP integer programming framework [2].
Directly solving the BNSL IP of the previous section is not practical due to
the exponential number of cluster constraints. Instead, GOBNILP utilizes a
branch-and-cut algorithm which adds constraints as they are needed. An
outline of the approach is given in Algorithm 17.

Algorithm 17 The branch-and-cut algorithm for a set of constraints c over
binary variables and an objective function f .

global x∗ . Best found integral solution.
1: function BranchAndCut(c, f)
2: repeat
3: x← SolveLPRelaxation(c, f)
4: if x∗ is defined and f(x) ≥ f(x∗) then return x∗

5: cnew ← FindCuttingPlanes(x)
6: c← c ∪ cnew
7: until cnew = ∅
8: if x is integral then
9: x∗ ← x

10: return x∗

11: else
12: Choose a variable y for which x assigns a non-integral value.
13: xy=0 ← BranchAndCut(c ∪ {y = 0}, f)
14: xy=1 ← BranchAndCut(c ∪ {y = 1}, f)
15: return arg minx̂∈{xy=0,xy=1} f(x̂)

The search starts on Line 3 by solving the linear programming (LP)
relaxation of Equations 9–10 and any constraints that have already been
added. The integrality constraint of the original IP, restricting variable values
to {0, 1}, is relaxed to allow values in the range [0, 1]. Unlike the IP, this LP
relaxation can be solved in polynomial time.

If the relaxation yields a result x worse than some known upper bound x∗,
the search backtracks. Otherwise, x∗ is updated and new cutting planes are
computed on Line 5. These are linear inequalities which constrain the search
space, and include any cluster constraints (of Equation 11) violated by x∗. If
no cutting planes are found and x∗ is integral (assigns integer values to each

55

variable), then x∗ is an optimal solution for the current branch. Otherwise,
the search branches on some variable y (Lines 12–14).

Algorithm 17 does not specify how the LP relaxation is solved or how
cutting planes are found. GOBNILP solves the LP relaxation within SCIP
using a standard LP solver such as SoPlex or CPLEX. The FindCutting-
Planes function searches for standard IP cutting planes (from, e.g., Gomory
or zero-half cuts), but also new cutting planes stemming from the cluster
constraints of Equation 11 [13, 33]. If x∗ violates the cluster constraint for a
cluster C, a cutting plane ∑

xi∈C

∑
S∩C=∅

PSi ≥ 1 (12)

can be added to refine the LP. On every call of FindCuttingPlanes,
GOBNILP solves a new integer program, called a sub-IP, to find these
cluster-based cutting planes.

The sub-IP is an integer program, the solutions of which are cyclic
subgraphs (clusters) over the set of nodes X. For the remainder of this
section, let x∗(PSi) ∈ [0, 1] be the value of PSi in the current best solution x∗
for the LP relaxation. Note that, by construction,

∑
S∈Pi

x∗(PSi) ≤ 1 holds
for any solution x∗ and node xi. To construct the sub-IP, binary variables Ci
are introduced for every xi to indicate if xi is in the found cluster C. Further
variables JSi are introduced for each PSi for which x∗(PSi) > 0 and S 6= ∅. If
JSi = 1, then xi is in the cluster and one of its parents in S is also in the
cluster. The sub-IP is then defined by Equations 13–16.

maximize
n∑
i=1

∑
S∈Pi

x∗(PSi) · JSi −
∑
xi∈X

Ci (13)

subject to JSi → Ci ∀JSi (14)

JSi →
∨
xj∈S

Cj ∀JSi (15)
n∑
i=1

Ci ≥ 2 (16)

Ci, J
S
i ∈ {0, 1} ∀i ∈ 1 . . . n, x∗(PSi) > 0

The objective function of Equation 13 serves two purposes. Its first part
prioritizes parent sets with high values in x∗ or alternatively nodes with many
valid (wrt. Equation 14 and 15) parent sets. The second part, −

∑
xi∈X Ci,

gives preference to smaller clusters by applying a penalty proportional to
cluster size. Equations 14 and 15 define semantics of the JSi variables. They
enforce the conditions that if JSi = 1, then

• (Equation 14) xi ∈ C, or equivalently Ci = 1, and

56

• (Equation 15) S ∩ C 6= ∅, i.e. there exists xj ∈ S such that Cj = 1.

Equation 16 rules out trivial clusters (those containing less than 2 nodes).
As argued by Cussens in [33], any feasible solution to the sub-IP has cost

greater than −1. Following Equation 12, they correspond to valid cutting
planes. During search, GOBNILP generally generates multiple non-optimal
feasible solutions before finding an optimal solution, and generates at least
one cutting plane based on each of them.

6.3 Solving Sub-IPs with MaxSAT

We note that a simple conversion of the GOBNILP sub-IP of Equations
13–16 to MaxSAT exists, and use the same binary variables JSi and Ci for the
reformulation. We then compare methods of enumerating the k best solutions
to the sub-IP under different constraints, using our re-implementation of
the MaxHS algorithm. Equation 14 can be represented as hard clauses
¬JSi ∨ Ci, and Equation 15 as hard clauses ¬JSi ∨

∨
xj∈S Cj . Equation 16

can be equivalently represented as hard clauses
∨
S∈Pi

JSi . This follows from
Equations 14 and 15 (or their clausal equivalents). Together they imply that
if JSi = 1 for any xi and S, then both Ci = 1 and Cj = 1 for some xj ∈ S,
which fulfills the constraint of Equation 16.

Both parts of the sub-IP objective function of Equation 13 can be rep-
resented as sets of unit soft clauses. The first part, the sum of the weights
of chosen parent sets JSi , is represented as unit soft clauses (JSi) with cost
x∗(PSi) for all xi and S ∈ Pi. The second part, which applies a unit penalty
for each node in the cluster, is represented as unit clauses (Ci) with weight 1
for every xi.

Combining these conversions, we have the following MaxSAT formulation
of the sub-IP:

Fh =
(∧
i

∧
S∈Pi

(
¬JSi ∨ Ci

))
∧

(∧
i

∧
S∈Pi

(
¬JSi ∨

∨
xj∈S

Cj
))
∧
∧
i

(∨
S∈Pi

JSi

)
Fs =

(∧
i

∧
S∈Pi

(
JSi , x

∗(PSi)
))
∧
∧
i

(Ci, 1).

(17)

Given a solution τ to this MaxSAT instance, we have τ(Ci) = 1 if and only
if xi ∈ C. A cluster C is defined by {Ci : τ(Ci) = 1}. Next we consider
different methods of adding constraints Equation 17 to rule out a found
cluster C.

57

Ruling out only the found cluster To rule out exactly the found cluster
C, the hard clause ∨

Ci:τ(Ci)=1
¬Ci ∨

∨
Ci:τ(Ci)=0

¬Ci

is added to the MaxSAT instance. The constraint requires that either one
of the selected nodes (Ci s.t. τ(Ci) = 1) must be unselected, or one of the
unselected nodes must be selected. Adding this constraint ensures that any
subsequent solution will not correspond to the same cluster C.

Ruling supersets and subsets Given two clusters, C and C ′ such that
C ⊂ C ′, the cutting plane given by C can result in a more significant
reduction of the LP search space than the cutting plane given by C ′ because
the cutting plane constraint becomes more restrictive. Supersets of a cluster
C can be ruled out by the hard clause∨

Ci:τ(Ci)=1
¬Ci.

Adding this clause guarantees that C contains at least one node not present
in any of the clusters given by the remaining MaxSAT solutions. Conversely,
the clause ∨

Ci:τ(Ci)=0
¬Ci

can be added to rule out subsets of C. This ensures that remaining solutions
give clusters orthogonal to C in the sense that they must include some nodes
not in C.

Ruling out overlapping clusters More orthogonal clusters—consisting
of non-overlapping sets of nodes—yield cutting planes which prune en-
tirely separate dimensions of the LP relaxation within GOBNILP. Such
non-overlapping clusters can be found by adding hard clauses∧

Ci:τ(Ci)=1
¬Ci

to the MaxSAT instance after a model τ corresponding to a cluster C is found.
These unit hard clauses ensure that no node in C is included in found clusters.

The incremental API of LMHS, detailed in Section 5.6, is used to add
the appropriate type of constraint to the MaxSAT instance after every found
solution. This is repeated until some desired condition is met, or until no
more solutions exist. The next section discusses experiments with these
constraints in more detail.

58

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 350 400 450 500 550

T
im

e
 (

se
co

n
d
s)

Number of instances solved

MaxSAT 10 : 490
MaxSAT 10 / overlap : 562

MaxSAT 1 : 559
MaxSAT 5 : 539

MaxSAT 5 / overlap : 562
MaxSAT all / overlap : 562

GOBNILP : 566
MaxSAT opt / overlap : 559

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 160 180 200 220 240
T
im

e
 (

se
co

n
d
s)

Number of instances solved

MaxSAT 10 : 223
MaxSAT 10 / overlap : 235

MaxSAT 1 : 236
MaxSAT 5 : 229

MaxSAT 5 / overlap : 235
MaxSAT all / overlap : 235

GOBNILP : 232
MaxSAT opt / overlap : 234

(b)

Figure 19: An evaluation of MaxSAT-based cutting planes for (a) Bayesian
network instances and (b) chordal Markov network instances.

6.4 Experiments

In this section, we replicate the experiments of [100] using an up-to-date
version of the LMHS API. We use a set of 567 Bayesian network struc-
ture learning instances [76] and 285 chordal Markov network learning11

instances [63]. The experiments were run on a cluster of 2.83GHz Intel Xeon
E5440 machines with 32 GB of memory running Debian 8. A time limit of
7200 seconds (2h) was enforced.

Figure 19 shows a comparison of the various MaxSAT-based sub-IP
methods to GOBNILP. The plots display the number of instances solved at
any time within the time limit. Separate plots are given for chordal Markov
network learning and Bayesian network learning instances. In the plots, the
parameter after “MaxSAT” (1/5/10/all/opt) refers to the number of best
sub-IP solutions solved for. This can be a fixed number, all solutions, or
all optimal solutions. A further parameter “overlap” specifies that sub-IP
solutions are incrementally refined to eliminate overlapping clusters.

The Bayesian network learning results of Figure 19 show the effectiveness
of cluster refinement. While even finding a single optimal sub-IP solution per-
forms well, some improvement is seen by finding multiple, non-overlapping
clusters. We note that on these instances, the current version of LMHS
performs slightly worse in comparison to GOBNILP than in the original
experiments of [100]. This suggests that developments which improve per-
formance on MaxSAT benchmarks in general do not necessarily translate

11Enabling the gobnilp/noimmoralities parameter in GOBNILP allows us to use an
identical sub-IP model for learning chordal Markov networks

59

 0

 1500

 3000

 4500

 6000

 0 1500 3000 4500 6000

G
O

B
N

IL
P

MaxSAT all / overlap

Solving time

Bayes

Markov

-0.8

-0.6

-0.4

-0.2

 0

-0.8 -0.6 -0.4 -0.2 0
G

O
B

N
IL

P

MaxSAT all / overlap

Cut quality

Bayes

Markov

 0

 750

 1500

 2250

 3000

 0 750 1500 2250 3000

G
O

B
N

IL
P

MaxSAT all / overlap

Sub-IP cuts

Bayes

Markov

 0

 200

 400

 600

 800

 0 200 400 600 800

G
O

B
N

IL
P

MaxSAT all / overlap

Mean sub-IP time (s)

Bayes

Markov

Figure 20: Comparisons of GOBNILP to “MaxSAT all / overlap”.

to improvements on the comparatively small sub-IP instances, and that a
sub-IP specific configuration could improve performance. On chordal Markov
network instances, however, the results show less variance in performance,
and the best MaxSAT-based methods slightly outperform GOBNILP.

Figure 20 provides a more detailed comparison between GOBNILP
and MaxSAT-based sub-IP computations with non-overlapping clusters
(“MaxSAT all / overlap”). We use different markers to distinguish between
Bayesian network learning and chordal Markov network learning instances.
The top left plot shows another comparison of solving times. Top right gives
a comparison of cut quality (in terms of the sub-IP objective function). We
see that the MaxSAT-based method adds higher quality cuts on average. A

60

comparison of mean sub-IP solving time per instance (bottom right) shows
that although we need to add significantly fewer sub-IP cuts (bottom left),
the sub-IPs take longer to solve on average. This comparison also serves
to explain the difference in solving times between Bayesian network and
Markov network instances. The MaxSAT solver seems to more efficiently
solve sub-IPs of the chordal Markov network instances.

7 Conclusion
This thesis focused on analyzing and extending MaxHS, and examining
applications arising from these extensions. We both reviewed our recent
work and introduced new contributions. As part of this work we developed
the LMHS MaxSAT solver, which won (among non-portfolio solvers) two
categories at the 2015 MaxSAT Evaluation. Our other contributions include
experiments with assumption shuffling to generate additional cores, a prelim-
inary investigation of parallelizing the MaxHS algorithm, and a case study
for applying external constraint propagators within a MaxSAT solver. We
also review work on integrating SAT-based preprocessing [20, 21] into LMHS
and gave an overview of its incremental MaxSAT API. An application of
this API was show in previous work relating to incrementally constraining
MaxSAT problems [100].

We see many promising areas of further study relating to this work. A
more in-depth investigation of partitioning strategies for parallelization could
further performance gains, as partitioning with SAT-based MaxSAT solvers
has already seen some success [86, 93]. Our initial results with external
constraint propagation show that it has the potential to be effective for
individual problem domains. It is also worth investigating these external
propagation techniques in conjunction with other MaxSAT algorithms. The
assumption shuffling techniques investigated could find use in MUS extraction
as well as core extraction in other MaxSAT algorithms. Finally, hitting-set
based methods in general could be applied to other optimization paradigms
such as ASP, as well as problems in knowledge representation and AI going
beyond NP.

Acknowledgements
This work has been financially supported by Academy of Finland under grants
284591 and 251170 COIN Centre of Excellence in Computational Inference
Research. I thank Matti Järvisalo and Petri Myllymäki for agreeing to act as
the supervisors of this thesis, Jeremias Berg for collaboration on [21] and [20]
as well as providing BTW-BNSL benchmark instances, Brandon Malone for
collaboration on [100], and Matti Järvisalo for advice and guidance on this
work.

61

References
[1] A. Abramé and D. Habet. Efficient application of Max-SAT resolution

on inconsistent subsets. In Proc. CP, volume 8656 of LNCS, pages
92–107, 2014.

[2] T. Achterberg. SCIP: solving constraint integer programs. Mathemati-
cal Programming Computation, 1(1):1–41, 2009.

[3] C. Ansótegui, M. Bonet, and J. Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013.

[4] C. Ansótegui, M. L. Bonet, and J. Levy. Solving (weighted) partial
MaxSAT through satisfiability testing. In Proc. SAT, volume 5584 of
LNCS, pages 427–440. Springer, 2009.

[5] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
Cardinality networks and their applications. In Proc. SAT, volume
5584 of LNCS, pages 167–180. Springer, 2009.

[6] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.
Cardinality networks: a theoretical and empirical study. Constraints,
16(2):195–221, 2011.

[7] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified Boolean formulas. Information
Processing Letters, 8(3):121–123, 1979.

[8] G. Audemard and L. Simon. Predicting learnt clauses quality in modern
SAT solvers. In Proc. IJCAI, pages 399–404. AAAI Press, 2009.

[9] F. Azadivar and J. Wang. Facility layout optimization using simulation
and genetic algorithms. International Journal of Production Research,
38(17):4369–4383, 2000.

[10] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of Boolean
cardinality constraints. In Proc. CP, volume 2833 of LNCS, pages
108–122. Springer, 2003.

[11] V. Balabanov and A. Ivrii. Speeding up MUS extraction with pre-
processing and chunking. In Proc. SAT, volume 9340 of LNCS, pages
17–32. Springer, 2015.

[12] J. F. Bard, G. Yu, and M. F. Arguello. Optimizing aircraft routings in
response to groundings and delays. IIE Transactions, 33(10):931–947,
2001.

62

[13] M. Bartlett and J. Cussens. Advances in Bayesian network learning
using integer programming. In Proc. UAI, pages 182–191. AUAI Press,
2013.

[14] A. Belov, M. Heule, and J. P. Marques-Silva. MUS extraction using
clausal proofs. In Proc. SAT, volume 8561 of LNCS, pages 48–57.
Springer, 2014.

[15] A. Belov, M. Järvisalo, and J. P. Marques-Silva. Formula preprocessing
in MUS extraction. In Proc. TACAS, volume 7795 of LNCS, pages
108–123. Springer, 2013.

[16] A. Belov and J. P. Marques-Silva. Accelerating MUS extraction with
recursive model rotation. In Proc. FMCAD, pages 37–40. IEEE, 2011.

[17] A. Belov, A. Morgado, and J. P. Marques-Silva. SAT-based preprocess-
ing for MaxSAT. In Proc. LPAR, volume 8312 of LNCS, pages 96–111.
Springer, 2013.

[18] J. Berg and M. Järvisalo. Optimal correlation clustering via MaxSAT.
In Proc. 2013 IEEE ICDM Workshops, pages 750–757. IEEE Press,
2013.

[19] J. Berg, M. Järvisalo, and B. Malone. Learning optimal bounded
treewidth bayesian networks via maximum satisfiability. In Proc. AIS-
TATS, pages 86–95. JMLR, 2014.

[20] J. Berg, P. Saikko, and M. Järvisalo. Improving the effectiveness of
SAT-based preprocessing for MaxSAT. In Proc. IJCAI, pages 239–245.
AAAI Press, 2015.

[21] J. Berg, P. Saikko, and M. Järvisalo. Re-using auxiliary variables for
MaxSAT preprocessing. In Proc. ICTAI. IEEE, 2015. To appear.

[22] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Model-
ing and Computation, 4:75–97, 2008.

[23] A. Biere. Lingeling essentials, A tutorial on design and implementation
aspects of the the SAT solver lingeling. In Pragmatics of SAT workshop
at FLoC, page 88. EasyChair, 2014.

[24] N. Bjørner and N. Narodytska. Maximum satisfiability using cores and
correction sets. In Proc. IJCAI, pages 246–252. AAAI Press, 2015.

[25] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs
is NP-complete. IEEE Transactions on Computers, 45(9):993–1002,
1996.

63

[26] K. Bunte, M. Järvisalo, J. Berg, P. Myllymäki, J. Peltonen, and
S. Kaski. Optimal neighborhood preserving visualization by maximum
satisfiability. In Proc. AAAI, pages 1694–1700. AAAI Press, 2014.

[27] K. Chandrasekaran, R. M. Karp, E. Moreno-Centeno, and S. Vempala.
Algorithms for implicit hitting set problems. In Proc. SODA, pages
614–629. SIAM, 2011.

[28] D. M. Chickering. Learning Bayesian networks is NP-complete. In
Learning from Data, pages 121–130. Springer, 1996.

[29] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[30] M. Codish and M. Zazon-Ivry. Pairwise cardinality networks. In
Proc. LPAR-16, volume 6355 of LNCS, pages 154–172. Springer, 2010.

[31] S. A. Cook. The complexity of theorem-proving procedures. In
Proc. STOC, pages 151–158. ACM, 1971.

[32] J. Cussens. Bayesian network learning by compiling to weighted MAX-
SAT. In Proc. UAI, pages 105–112. AUAI Press, 2008.

[33] J. Cussens. Bayesian network learning with cutting planes. In
Proc. UAI, pages 153–160. AUAI Press, 2011.

[34] A. Darwiche. Tractable knowledge representation formalisms. In
Tractability: Practical Approaches to Hard Problems. Cambridge Uni-
versity Press, 2014.

[35] S. Daskalaki, T. Birbas, and E. Housos. An integer programming
formulation for a case study in university timetabling. European
Journal of Operational Research, 153(1):117–135, 2004.

[36] J. Davies. Solving MAXSAT by Decoupling Optimization and Satisfac-
tion. PhD thesis, University of Toronto, 2013.

[37] J. Davies and F. Bacchus. Solving MAXSAT by solving a sequence
of simpler SAT instances. In Proc. CP, volume 6876 of LNCS, pages
225–239. Springer, 2011.

[38] J. Davies and F. Bacchus. Exploiting the power of MIP solvers in
MAXSAT. In Proc. SAT, volume 7962 of LNCS, pages 166–181.
Springer, 2013.

[39] J. Davies and F. Bacchus. Postponing optimization to speed up
MAXSAT solving. In Proc. CP, volume 8124 of LNCS, pages 247–262.
Springer, 2013.

64

[40] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. Journal of Logic
Programming, 1(3):267–284, 1984.

[41] J. Dunagan and S. Vempala. A simple polynomial-time rescaling
algorithm for solving linear programs. Mathematical Programming,
114(1):101–114, 2008.

[42] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. In Proc. SAT, volume 3569 of LNCS, pages
61–75. Springer, 2005.

[43] N. Eén and N. Sörensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4):543–
560, 2003.

[44] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT,
volume 2919 of LNCS, pages 502–518. Springer, 2004.

[45] N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into
SAT. Journal of Satisfiability, Boolean Modeling and Computation,
2(1-4):1–26, 2006.

[46] G. Elidan and S. Gould. Learning bounded treewidth bayesian networks.
In Proc. NIPS, pages 417–424, 2009.

[47] J. Franco and J. Martin. A history of satisfiability. In Handbook of
Satisfiability, chapter 1, pages 3–55. IOS Press, 2009.

[48] Z. Fu and S. Malik. On solving the partial MAX-SAT problem. In
Proc. SAT, volume 4121 of LNCS, pages 252–265. Springer, 2006.

[49] M. Gebser, T. Janhunen, and J. Rintanen. SAT modulo graphs:
Acyclicity. In Proc. JELIA, volume 8761 of LNAI, pages 137–151.
Springer, 2014.

[50] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187:52–89,
2012.

[51] M. Gebser, B. Kaufmann, and T. Schaub. Advanced conflict-driven
disjunctive answer set solving. In Proc. IJCAI, pages 912–918. AAAI
Press, 2013.

[52] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In
Handbook of Satisfiability, chapter 20, pages 633–650. IOS Press, 2009.

65

[53] J. Guerra and I. Lynce. Reasoning over biological networks using
maximum satisfiability. In Proc. CP, volume 7514 of LNCS, pages
941–956. Springer, 2012.

[54] F. Heras, A. Morgado, and J. P. Marques-Silva. Core-guided binary
search algorithms for maximum satisfiability. In Proc. AAAI, pages
36–41. AAAI Press, 2011.

[55] F. Heras, A. Morgado, and J. P. Marques-Silva. An empirical study of
encodings for group MaxSAT. In Proc. Canadian Conference on AI,
volume 7310 of LNCS, pages 85–96. Springer, 2012.

[56] J. Huang. The effect of restarts on the efficiency of clause learning. In
Proc. IJCAI, pages 2318–2323. AAAI Press, 2007.

[57] IBM ILOG. CPLEX optimizer 12.6.0, 2014. http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/.

[58] M. Janota, R. Grigore, and J. P. Marques-Silva. Counterexample guided
abstraction refinement algorithm for propositional circumscription. In
Proc. JELIA, volume 6341 of LNAI, pages 195–207. Springer, 2010.

[59] M. Janota and J. P. Marques-Silva. Abstraction-based algorithm for
2QBF. In Proc. SAT, volume 6695 of LNCS, pages 230–244. Springer,
2011.

[60] M. Järvisalo, D. L. Berre, O. Roussel, and L. Simon. The international
SAT solver competitions. AI Magazine, 33(1):89–94, 2012.

[61] D. S. Johnson. Approximation algorithms for combinatorial problems.
In Proc. STOC, pages 38–49. ACM, 1973.

[62] M. Jose and R. Majumdar. Cause clue clauses: error localization using
maximum satisfiability. In Proc. PLDI, pages 437–446. ACM, 2011.

[63] K. Kangas, M. Koivisto, and T. Niinimäki. Learning chordal Markov
networks by dynamic programming. In Proc. NIPS, pages 2357–2365,
2014.

[64] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–396, 1984.

[65] R. M. Karp. Reducibility among combinatorial problems. In Proc. Com-
plexity of Computer Computations, The IBM Research Symposia Series,
pages 85–103. Plenum Press, 1972.

[66] H. Katebi, K. A. Sakallah, and J. P. Marques-Silva. Empirical study
of the anatomy of modern SAT solvers. In Proc. SAT, volume 6695 of
LNCS, pages 343–356. Springer, 2011.

66

[67] H. A. Kautz and B. Selman. Planning as satisfiability. In ECAI,
volume 92, pages 359–363. Wiley, 1992.

[68] J. A. Kelner and D. A. Spielman. A randomized polynomial-time
simplex algorithm for linear programming. In Proc. STOC, pages
51–60. ACM, 2006.

[69] A. Klose and A. Drexl. Facility location models for distribution system
design. European Journal of Operational Research, 162(1):4–29, 2005.

[70] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. QMaxSAT: A
partial Max-SAT solver. Journal of Satisfiability, Boolean Modeling
and Computation, 8(1/2):95–100, 2012.

[71] T. Kropf. Introduction to Formal Hardware Verification. Springer
Science & Business Media, 2013.

[72] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[73] H. C. Lau. On the complexity of manpower shift scheduling. Computers
& Operations Research, 23(1):93–102, 1996.

[74] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints. In
Handbook of Satisfiability, chapter 19, pages 613–631. IOS Press, 2009.

[75] C. M. Li, F. Manyà, and J. Planes. New inference rules for Max-SAT.
Journal of Artificial Intelligence Research, 30:321–359, 2007.

[76] B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and P. Myllymäki.
Predicting the hardness of learning Bayesian networks. In Proc. AAAI,
pages 2460–2466. AAAI Press, 2014.

[77] N. Manthey. Coprocessor 2.0–a flexible CNF simplifier. In Proc. SAT,
volume 7317 of LNCS, pages 436–441. Springer, 2012.

[78] J. P. Marques-Silva. Practical applications of Boolean satisfiability. In
Proc. WODES, pages 74–80. IEEE, 2008.

[79] J. P. Marques-Silva, M. Janota, A. Ignatiev, and A. Morgado. Efficient
model based diagnosis with maximum satisfiability. In Proc. IJCAI,
pages 1966–1972. AAAI Press, 2015.

[80] J. P. Marques-Silva and I. Lynce. Towards robust CNF encodings of
cardinality constraints. In Proc. CP, volume 4741 of LNCS, pages
483–497. Springer, 2007.

[81] J. P. Marques-Silva and I. Lynce. On improving MUS extraction
algorithms. In Proc. SAT, volume 6685 of LNCS, pages 159–173.
Springer, 2011.

67

[82] J. P. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause
learning SAT solvers. In Handbook of Satisfiability, chapter 4, pages
131–153. IOS Press, 2009.

[83] J. P. Marques-Silva and J. Planes. On using unsatisfiability for solving
maximum satisfiability. CoRR, abs/0712.1097, 2007.

[84] J. P. Marques-Silva and J. Planes. Algorithms for maximum satis-
fiability using unsatisfiable cores. In Advanced Techniques in Logic
Synthesis, Optimizations and Applications, pages 171–182. Springer,
2011.

[85] J. P. Marques-Silva and K. A. Sakallah. Conflict analysis in search
algorithms for satisfiability. In Proc. ICTAI, pages 467–469. IEEE,
1996.

[86] R. Martins, V. M. Manquinho, and I. Lynce. On partitioning for
maximum satisfiability. In Proc. ECAI, volume 242 of FAIA, pages
913–914. IOS Press, 2012.

[87] R. Martins, V. M. Manquinho, and I. Lynce. Open-WBO: A modular
MaxSAT solver,. In Proc. SAT, volume 8561 of LNCS, pages 438–445.
Springer, 2014.

[88] E. Moreno-Centeno and R. M. Karp. The implicit hitting set approach
to solve combinatorial optimization problems with an application to
multigenome alignment. Operations Research, 61(2):453–468, 2013.

[89] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. P. Marques-Silva.
Iterative and core-guided MaxSAT solving: A survey and assessment.
Constraints, 18(4):478–534, 2013.

[90] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proc. EDAC, pages
530–535. ACM, 2001.

[91] A. Nadel, V. Ryvchin, and O. Strichman. Efficient MUS extraction
with resolution. In Proc. FMCAD, pages 197–200. IEEE, 2013.

[92] N. Narodytska and F. Bacchus. Maximum satisfiability using core-
guided MaxSAT resolution. In Proc. AAAI, pages 2717–2723. AAAI,
2014.

[93] M. Neves, R. Martins, M. Janota, I. Lynce, and V. Manquinho. Exploit-
ing resolution-based representations for MaxSAT solving. In Proc. SAT,
volume 9340 of LNCS. Springer, 2015.

68

[94] I. Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3-4):241–273, 1999.

[95] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT mod-
ulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[96] O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy
clause generation. Constraints, 14(3):357–391, 2009.

[97] K. Pipatsrisawat and A. Darwiche. Clone: Solving weighted Max-SAT
in a reduced search space. In Proc. AI, volume 4830 of LNCS, pages
223–233. Springer, 2007.

[98] S. Prestwich. CNF Encodings. In Handbook of Satisfiability, chapter 2,
pages 75–97. IOS Press, 2009.

[99] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[100] P. Saikko, B. Malone, and M. Järvisalo. MaxSAT-based cutting planes
for learning graphical models. In Proc. CPAIOR, volume 9075 of LNCS,
pages 347–356. Springer, 2015.

[101] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1998.

[102] R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfia-
bility, Boolean Modeling and Computation, 3:141–224, 2007.

[103] V. D. Silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–
1178, 2008.

[104] C. Sinz. Towards an optimal CNF encoding of Boolean cardinality con-
straints. In Proc. CP, volume 3709 of LNCS, pages 827–831. Springer,
2005.

[105] G. S. Tseitin. On the complexity of derivation in propositional calculus.
In Automation of Reasoning, pages 466–483. Springer, 1983.

[106] C. Zhu, G. Weissenbacher, and S. Malik. Post-silicon fault localisation
using maximum satisfiability and backbones. In Proc. FMCAD, pages
63–66. IEEE, 2011.

69

	Introduction
	Preliminaries
	SAT
	SAT solvers
	Maximum satisfiability
	Unsatisfiable cores
	MaxSAT solvers

	Integer programming

	The MaxHS algorithm
	Hitting sets
	Solving MaxSAT with cores and hitting sets
	Assumption variables in MaxHS
	Using non-optimal hitting sets
	Presolving
	Disjoint phase
	Assumption variable equivalences

	Core minimization
	Re-refuting cores
	Finding minimal cores

	Re-implementing MaxHS
	The LMHS Solver
	Evaluating non-optimal hitting set strategies
	Impact of IP and SAT solvers
	Solver comparison

	Extensions
	Fast core extraction through CDCL conflict analysis
	Experiments

	Parallelizing MaxHS
	Partitioning
	Experiments

	External propagators
	Acyclicity constraint propagation
	Experiments

	Reusing assumption variables
	Experiments
	Incremental solving
	Model enumeration
	LMHS API

	Applying incremental MaxSAT
	Learning optimal Bayesian network structures
	GOBNILP
	Solving Sub-IPs with MaxSAT
	Experiments

	Conclusion
	References

