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Algorithms

Focus of the thesis
Design, implement, and evaluate algorithms.

Algorithm
A sequence of instructions that solves a class of problems.
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Problems

Decision
Are there any solutions?

Optimization
Find a best solution, for example:
I Fastest route
I Most efficient schedule
I Most probable cause
I etc...

Complexity
This thesis: Optimization when the corresponding decision problem
is NP-complete (or harder)
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Applications

I Route planning:
e.g. autonomous vehicles in
warehouses

I Scheduling:
e.g. assigning terminals,
timeslots, or runways for air
traffic

I Hardware design:
e.g. chip layout optimization
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Declarative Approach

Alternative to special-purpose algorithms:

1. Model problem in a constraint language as a set of constraints
2. Solve using a generic algorithm (solver) for that constraint

language
3. Reconstruct a solution for the original problem

Benefits
I Easy to refine and extend problem definition
I Solver development benefits many different problem domains
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Constraint Languages

Many approaches to model and solve constrained optimization
problems:

I Integer and linear programming (ILP / LP)

I Finite-domain constraint satisfaction/optimization (CP)

I Boolean satisfiability (SAT)

I Satisfiability modulo theories (SMT)

I Maximum satisfiability (MaxSAT)

I Answer set programming (ASP)

I etc ...
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How?

Implicit Hitting Set Algorithms for Constraint Optimization
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Hitting Sets

I Set of elements: circles

I Subsets to hit: rounded rectangles
I A hitting set: orange circles

NP-hard problem: Find smallest or minimum-cost hitting set
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Optimizing with Hitting Sets

A

C

B D

E

Max Cut
Partition vertices into two sets,
maximizing the number of edges
between them.

Constraints
For each edge: endpoints in different partitions (e.g. “A 6= B”)

Cores
A 6= B or B 6= C or A 6= C ,
B 6= C or C 6= D or B 6= D,
C 6= D or D 6= E or C 6= E ,
A 6= B or B 6= D or D 6= E or C 6= E or A 6= C

Hitting Set
A 6= C and C 6= D
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Generalizing

I Core: A subset of constraints that cannot be simultaneously
satisfied

I A solution must leave out a part of each core

I Unsatisfied constraints form a hitting set of the set of all cores

I If the solution is optimal, this is a minimum hitting set
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Developing a Viable Approach

I Finding even one core is often a complex task.
(We need to solve NP-complete problems)

I Problem can have exponential number of cores.
(Even in the simple Max Cut example)

I Can we find a hitting set of all cores without knowing all cores?
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Implicit Hitting Set Algorithms

I Alternate between finding cores and computing hitting sets
I Solve hitting set problems with e.g. integer programming
I Find cores with a solver for the corresponding decision problem

Core
Extractor

Hitting Set
Optimizer

Output
Solution

Input

Objective
functionConstraints
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Implicit Hitting Sets
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Contributions

Instantiations of the IHS algorithms to 4 constraint optimization
domains:
I MaxSAT (Papers I, II)
I Causal structure learning (Paper III)
I Abductive reasoning (Paper IV)
I Answer set optimization (Paper V)
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IHS for Constraint Languages

General purpose constraint optimization languages
I Applications in various domains

MaxSAT
I Constraints: CNF clauses “l1 ∨ · · · ∨ ln”
I Core extractor: SAT solver (NP-complete)

Answer set optimization
I Constraints: inference rules “p1 ∨ · · · ∨ pm ← l1 ∧ · · · ∧ ln”
I Core extractor: ASP solver (ΣP

2 -complete)
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Causal Structure Learning

Problem setting

1. Observations of random variables
2. (In)dependencies from statistical tests
3. Constraint encoding of d-separation conditions
4. Computing globally optimal causal structure

X1 X2 X3
0.1 −0.34 0.8
0.22 −0.4 −0.1
...

...
...

DATA

⇒

k w(k)
X1 ⊥⊥ X3 3.29

X1 ⊥⊥ X3|X2 3.73
X2 6⊥⊥ X3 23.4

X2 6⊥⊥ X3|X1 21.2
X1 6⊥⊥ X2 15.8

X1 6⊥⊥ X2|X3 10.11

(IN)DEPENDENCIES

⇒ IHS
optimization ⇒

X1

X2

X3

CAUSAL GRAPH
STRUCTURE
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Causal Structure Learning

Connection to IHS

Q 6⊥⊥ X Y 6⊥⊥ Z |X , W X 6⊥⊥ Z |Y , W Q ⊥⊥ Z
Y 6⊥⊥ Z |W X ⊥⊥ Y |Z , W X ⊥⊥ Y |W

X ⊥⊥ Y |W

X 6⊥⊥ Z |W

X 6⊥⊥W X 6⊥⊥W |Z X 6⊥⊥ Y |W , Q Q 6⊥⊥ Y |X

W 6⊥⊥ Z Q ⊥⊥W Y ⊥⊥ Q|W Q ⊥⊥ Z |W

⇓

Q

X Z Y

W
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Abductive Reasoning

I Abduction:
Explanation finding problem

I Optimization:
What is the simplest explanation?

I Formalization:
CNF propositional formulas
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Abductive Reasoning

⇒ ⇒ “cat”

︸ ︷︷ ︸
Set of hypothesis

︸ ︷︷ ︸
Theory

︸ ︷︷ ︸
Observation
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Abductive Reasoning

⇒ ⇒ “bicycle”

︸ ︷︷ ︸
Set of hypothesis

︸ ︷︷ ︸
Theory

︸ ︷︷ ︸
Observation
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Contributions
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Instances solved

ASP |M|=5  176
AbHS |M|=5  195
AbHS+ |M|=5  266
ASP |M|=10 130
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Clasp-usc (W) : 99
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Real−world data, 6−10 nodes, 240−11520 soft constraints
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Maxino
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OpenWBO
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I Practical implementations of optimization algorithms
I Empirical evaluations show performance
I Open source code
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