

DEPARTMENT OF COMPUTER SCIENCE PHD THESIS

IMPLICIT HITTING SET ALGORITHMS FOR CONSTRAINT OPTIMIZATION

PAUL SAIKKO

Implicit Hitting Set Algorithms for Constraint Optimization

Implicit Hitting Set Algorithms for Constraint Optimization

Algorithms

Focus of the thesis

Design, implement, and evaluate algorithms.

Algorithm

A sequence of instructions that solves a class of problems.

Problems

Decision Are there any solutions?

Optimization

Find a best solution, for example:

Fastest route

- Most efficient schedule
- Most probable cause

etc...

Complexity

This thesis: Optimization when the corresponding decision problem is NP-complete (or harder)

Problems

Decision

Are there any solutions?

Optimization

Find a best solution, for example:

- Fastest route
- Most efficient schedule
- Most probable cause
- etc...

Complexity

This thesis: Optimization when the corresponding decision problem is NP-complete (or harder)

Problems

Decision

Are there any solutions?

Optimization

Find a best solution, for example:

- Fastest route
- Most efficient schedule
- Most probable cause
- etc...

Complexity

This thesis: Optimization when the corresponding decision problem is NP-complete (or harder)

Applications

 Route planning:
e.g. autonomous vehicles in warehouses

 Scheduling: e.g. assigning terminals, timeslots, or runways for air traffic

Hardware design:
e.g. chip layout optimization

Alternative to special-purpose algorithms:

- 1. Model problem in a constraint language as a set of constraints
- 2. **Solve** using a generic algorithm (solver) for that constraint language
- 3. Reconstruct a solution for the original problem

- Easy to refine and extend problem definition
- Solver development benefits many different problem domains

Alternative to special-purpose algorithms:

- 1. Model problem in a constraint language as a set of constraints
- 2. **Solve** using a generic algorithm (solver) for that constraint language
- 3. Reconstruct a solution for the original problem

- Easy to refine and extend problem definition
- Solver development benefits many different problem domains

Alternative to special-purpose algorithms:

- 1. Model problem in a constraint language as a set of constraints
- 2. **Solve** using a generic algorithm (solver) for that constraint language
- 3. Reconstruct a solution for the original problem

- Easy to refine and extend problem definition
- Solver development benefits many different problem domains

Alternative to special-purpose algorithms:

- 1. Model problem in a constraint language as a set of constraints
- 2. **Solve** using a generic algorithm (solver) for that constraint language
- 3. Reconstruct a solution for the original problem

- Easy to refine and extend problem definition
- Solver development benefits many different problem domains

Constraint Languages

Many approaches to model and solve constrained optimization problems:

- Integer and linear programming (ILP / LP)
- Finite-domain constraint satisfaction/optimization (CP)
- Boolean satisfiability (SAT)
- Satisfiability modulo theories (SMT)
- Maximum satisfiability (MaxSAT)
- Answer set programming (ASP)
- 🕨 etc ...

Constraint Languages

Many approaches to model and solve constrained optimization problems:

- Integer and linear programming (ILP / LP)
- Finite-domain constraint satisfaction/optimization (CP)
- Boolean satisfiability (SAT)
- Satisfiability modulo theories (SMT)
- Maximum satisfiability (MaxSAT)
- Answer set programming (ASP)

Implicit Hitting Set Algorithms for Constraint Optimization

Implicit Hitting Set Algorithms for Constraint Optimization

Set of elements: circles

• • • • •

- Set of elements: circles
- Subsets to hit: rounded rectangles

- Set of elements: circles
- Subsets to hit: rounded rectangles

- Set of elements: circles
- Subsets to hit: rounded rectangles

- Set of elements: circles
- Subsets to hit: rounded rectangles

- Set of elements: circles
- Subsets to hit: rounded rectangles

- Set of elements: circles
- Subsets to hit: rounded rectangles
- ► A hitting set: orange circles

- Set of elements: circles
- Subsets to hit: rounded rectangles
- A hitting set: orange circles

NP-hard problem: Find smallest or minimum-cost hitting set

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Constraints

For each edge: endpoints in different partitions (e.g. " $A \neq B$ ")

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Constraints

For each edge: endpoints in different partitions (e.g. " $A \neq B$ ")

Cores

$$\begin{array}{l} A \neq B \text{ or } B \neq C \text{ or } A \neq C, \\ B \neq C \text{ or } C \neq D \text{ or } B \neq D, \\ C \neq D \text{ or } D \neq E \text{ or } C \neq E, \\ A \neq B \text{ or } B \neq D \text{ or } D \neq E \text{ or } C \neq E \text{ or } A \neq C \end{array}$$

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Constraints

For each edge: endpoints in different partitions (e.g. " $A \neq B$ ")

Cores

 $A \neq B \text{ or } B \neq C \text{ or } A \neq C,$ $B \neq C \text{ or } C \neq D \text{ or } B \neq D,$ $C \neq D \text{ or } D \neq E \text{ or } C \neq E,$ $A \neq B \text{ or } B \neq D \text{ or } D \neq E \text{ or } C \neq E \text{ or } A \neq C$ Hitting Set $A \neq C$ and $C \neq D$

Max Cut

Partition vertices into two sets, maximizing the number of edges between them.

Constraints

For each edge: endpoints in different partitions (e.g. " $A \neq B$ ")

Cores

 $A \neq B \text{ or } B \neq C \text{ or } A \neq C,$ $B \neq C \text{ or } C \neq D \text{ or } B \neq D,$ $C \neq D \text{ or } D \neq E \text{ or } C \neq E,$ $A \neq B \text{ or } B \neq D \text{ or } D \neq E \text{ or } C \neq E \text{ or } A \neq C$ Hitting Set $A \neq C$ and $C \neq D$

Core: A subset of constraints that cannot be simultaneously satisfied

A solution must leave out a part of each core

- Unsatisfied constraints form a hitting set of the set of all cores
- If the solution is optimal, this is a minimum hitting set

- Core: A subset of constraints that cannot be simultaneously satisfied
- A solution must leave out a part of each core
- Unsatisfied constraints form a hitting set of the set of all cores
- If the solution is optimal, this is a minimum hitting set

- Core: A subset of constraints that cannot be simultaneously satisfied
- A solution must leave out a part of each core
- Unsatisfied constraints form a hitting set of the set of all cores
- If the solution is optimal, this is a minimum hitting set

- Core: A subset of constraints that cannot be simultaneously satisfied
- A solution must leave out a part of each core
- Unsatisfied constraints form a hitting set of the set of all cores
- If the solution is optimal, this is a minimum hitting set

Developing a Viable Approach

- Finding even one core is often a complex task. (We need to solve NP-complete problems)
- Problem can have exponential number of cores. (Even in the simple Max Cut example)
- Can we find a hitting set of all cores without knowing all cores?

Developing a Viable Approach

- Finding even one core is often a complex task. (We need to solve NP-complete problems)
- Problem can have exponential number of cores. (Even in the simple Max Cut example)

Can we find a hitting set of all cores without knowing all cores?
Developing a Viable Approach

- Finding even one core is often a complex task. (We need to solve NP-complete problems)
- Problem can have exponential number of cores. (Even in the simple Max Cut example)
- Can we find a hitting set of all cores without knowing all cores?

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

- Alternate between finding cores and computing hitting sets
- Solve hitting set problems with e.g. integer programming
- > Find cores with a solver for the corresponding decision problem

• • • • •

Instantiations of the IHS algorithms to 4 constraint optimization domains:

MaxSAT (Papers I, II)

- Causal structure learning (Paper III)
- Abductive reasoning (Paper IV)
- Answer set optimization (Paper V)

Instantiations of the IHS algorithms to 4 constraint optimization domains:

- MaxSAT (Papers I, II)
- Causal structure learning (Paper III)
- Abductive reasoning (Paper IV)
- Answer set optimization (Paper V)

Instantiations of the IHS algorithms to 4 constraint optimization domains:

- MaxSAT (Papers I, II)
- Causal structure learning (Paper III)
- Abductive reasoning (Paper IV)

Answer set optimization (Paper V)

Instantiations of the IHS algorithms to 4 constraint optimization domains:

- MaxSAT (Papers I, II)
- Causal structure learning (Paper III)
- Abductive reasoning (Paper IV)
- Answer set optimization (Paper V)

IHS for Constraint Languages

General purpose constraint optimization languages

Applications in various domains

MaxSAT

- Constraints: CNF clauses " $l_1 \lor \cdots \lor l_n$ "
- Core extractor: SAT solver (NP-complete)

Answer set optimization

- ▶ Constraints: inference rules " $p_1 \lor \cdots \lor p_m \leftarrow l_1 \land \cdots \land l_n$ "
- Core extractor: ASP solver (Σ_2^P -complete)

IHS for Constraint Languages

General purpose constraint optimization languages

Applications in various domains

MaxSAT

- ▶ Constraints: CNF clauses " $l_1 \lor \cdots \lor l_n$ "
- Core extractor: SAT solver (NP-complete)

Answer set optimization

- ▶ Constraints: inference rules " $p_1 \lor \cdots \lor p_m \leftarrow l_1 \land \cdots \land l_n$ "
- Core extractor: ASP solver (Σ_2^P -complete)

IHS for Constraint Languages

General purpose constraint optimization languages

Applications in various domains

MaxSAT

- ▶ Constraints: CNF clauses " $l_1 \lor \cdots \lor l_n$ "
- Core extractor: SAT solver (NP-complete)

Answer set optimization

- ▶ Constraints: inference rules " $p_1 \lor \cdots \lor p_m \leftarrow l_1 \land \cdots \land l_n$ "
- Core extractor: ASP solver (Σ_2^P -complete)

- 1. Observations of random variables
- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

Problem setting

1. Observations of random variables

- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

- 1. Observations of random variables
- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

- 1. Observations of random variables
- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

- 1. Observations of random variables
- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

- 1. Observations of random variables
- 2. (In)dependencies from statistical tests
- 3. Constraint encoding of d-separation conditions
- 4. Computing globally optimal causal structure

Connection to IHS

$Q \not\perp X$	$Y \not\perp Z X, W$	$X \not\perp Z Y, W$	$Q \perp\!\!\!\perp Z$
Y⊥⊥Z W	$X \perp \!\!\!\!\perp Y Z, W$	$X \perp \!\!\!\!\perp Y W$	$X \not\perp Z W$
X ⊥ W	$X \not\perp W Z$	$X \not\perp \!\!\!\!\perp Y W, Q$	$Q \not\!\!\perp Y X$
W⊥⊥Z	$Q \perp\!\!\!\perp W$	$Y \perp \!\!\!\!\perp Q W$	$Q \perp\!\!\!\perp Z W$

Connection to IHS

$Q \not\!\perp X$	$Y \not\perp Z X, W$	$X \not\perp Z Y, W$	$Q \perp\!\!\!\perp Z$
$\bigvee \not\perp Z W$	$X \perp\!\!\!\perp Y Z, W$	$X \perp \!\!\!\!\perp Y W$	$X \not\parallel Z \mid W$
$X \not\perp W$	$X \not\perp W Z$	$X \not\perp \!\!\!\perp Y W, Q$	$Q \not \perp Y X$
W⊥∠Z	$Q \perp\!\!\!\perp W$	$Y \perp \!\!\!\!\perp Q W$	$Q \perp\!\!\!\perp Z W$
Causal Structure Learning

Connection to IHS

Causal Structure Learning

Connection to IHS

Causal Structure Learning

Connection to IHS

Abduction: Explanation finding problem

Optimization: What is the simplest explanation?

 Formalization: CNF propositional formulas

 Abduction: Explanation finding problem

 Optimization: What is the simplest explanation?

Formalization: CNF propositional formulas

 Abduction: Explanation finding problem

 Optimization: What is the simplest explanation?

 Formalization: CNF propositional formulas

Contributions

- Practical implementations of optimization algorithms
- Empirical evaluations show performance
- Open source code

DEPARTMENT OF COMPUTER SCIENCE PHD THESIS

IMPLICIT HITTING SET ALGORITHMS FOR CONSTRAINT OPTIMIZATION

PAUL SAIKKO