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Design, implement, and evaluate algorithms.

A sequence of instructions that solves a class of problems.
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Are there any solutions?

Find a best solution, for example:
Fastest route
Most efficient schedule
Most probable cause

etc...

This thesis: Optimization when the corresponding decision problem
is NP-complete (or harder)
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Route planning:
e.g. autonomous vehicles in
warehouses

Scheduling:

e.g. assigning terminals,
timeslots, or runways for air
traffic

Hardware design:
e.g. chip layout optimization
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Alternative to special-purpose algorithms:

Model problem in a constraint language as a set of constraints
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Alternative to special-purpose algorithms:

Model problem in a constraint language as a set of constraints

Solve using a generic algorithm (solver) for that constraint
language

Reconstruct a solution for the original problem

Easy to refine and extend problem definition

Solver development benefits many different problem domains



Many approaches to model and solve constrained optimization
problems:

Integer and linear programming (ILP / LP)
Finite-domain constraint satisfaction/optimization (CP)
Boolean satisfiability (SAT)

Satisfiability modulo theories (SMT)

Maximum satisfiability (MaxSAT)

Answer set programming (ASP)

etc ...
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Set of elements: circles
Subsets to hit: rounded rectangles

A hitting set: orange circles
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Set of elements: circles

Subsets to hit: rounded rectangles

A hitting set: orange circles

NP-hard problem: Find smallest or minimum-cost hitting set
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Partition vertices into two sets,
maximizing the number of edges
between them.
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Core: A subset of constraints that cannot be simultaneously
satisfied

A solution must leave out a part of each core
Unsatisfied constraints form a hitting set of the set of all cores

If the solution is optimal, this is a minimum hitting set
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Finding even one core is often a complex task.
(We need to solve NP-complete problems)
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Finding even one core is often a complex task.
(We need to solve NP-complete problems)

Problem can have exponential number of cores.
(Even in the simple Max Cut example)

Can we find a hitting set of all cores without knowing all cores?
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Alternate between finding cores and computing hitting sets
Solve hitting set problems with e.g. integer programming

Find cores with a solver for the corresponding decision problem
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Alternate between finding cores and computing hitting sets
Solve hitting set problems with e.g. integer programming

Find cores with a solver for the corresponding decision problem

Input
Constraints Object.ive
function
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‘\Hitting Set
Solution
Output

12/20















© o 0 o

13 /20



© o 0 o




13 /20






13 /20









Instantiations of the IHS algorithms to 4 constraint optimization
domains:

MaxSAT (Papers |, I1)

14 /20



Instantiations of the IHS algorithms to 4 constraint optimization
domains:

MaxSAT (Papers |, I1)
Causal structure learning (Paper I11)

14 /20



Instantiations of the IHS algorithms to 4 constraint optimization
domains:

MaxSAT (Papers |, I1)
Causal structure learning (Paper I11)

Abductive reasoning (Paper V)

14 /20



Instantiations of the IHS algorithms to 4 constraint optimization
domains:

MaxSAT (Papers |, I1)

Causal structure learning (Paper I11)

Abductive reasoning (Paper V)

Answer set optimization (Paper V)

14 /20



General purpose constraint optimization languages
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General purpose constraint optimization languages

Applications in various domains

Constraints: CNF clauses “/ vV ---V [,"
Core extractor: SAT solver (NP-complete)

Constraints: inference rules “py V- -V pm < h A= A L"

Core extractor: ASP solver (5-complete)
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Causal Structure Learning

Problem setting

Observations of random variables
(In)dependencies from statistical tests
Constraint encoding of d-separation conditions

Computing globally optimal causal structure
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Observations of random variables

(In)dependencies from statistical tests

Constraint encoding of d-separation conditions

Computing globally optimal causal structure

DATA
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Abduction:

Explanation finding problem
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Optimization:
What is the simplest explanation?
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Abduction:
Explanation finding problem

Optimization:
What is the simplest explanation?

Formalization:
CNF propositional formulas
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Abductive Reasoning

%

1

7

o&o»oWVo
NP

v

19/20



Q‘o

h

Vi
/@@M@.

AN
hhe
1

APN
vo

\

Observation

Theory

Set of hypothesis

19/20



<
o
>

L2

8

NV

Observation

Theory

Set of hypothesis

19/20



<
o
>

L2

8

Y

Observation

Theory

Set of hypothesis

19/20



1800

1600

1400

Tine (sec)

600

400

200

A
AbHS+

B

176 -0
195 -4
266 -G+
|M]=10 130 - © -4
[M]=10 126 - & -|
|M|=10 198 - & |
|M]=15 123 ——|

|M]=15 166 ——|

50 100
Instances solved

eal-world data, 6-10 nodes, 240-11520

nstrain

pos

i

2000 4000 6000

Timeout (s)

0
L

gl

« Dseptor
« Maxino
4 QMaxSAT

© MaxHS
MSCG15b
MSCG15a

o WPM3

© OpenWBO

© CPLEX

20 4 5
Instances solved

0

Clasp-bb (U) : 40
A

SP-HS (U) : 41

ASP-H
Clasp-bt

Timeout (s)

S (W
b (W)

135

Time (sec)

Practical implementations of optimization algorithms

Empirical evaluations show performance

Open source code
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