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Goal: Find exact solutions to computationally difficult problems

Determine if a solution exists

Find, with respect to a given objective function, the best solution
smallest
fastest
cheapest
most probable

etc...
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Can a given propositional logic formula be
satisfied? (SAT) [Cook, 1971]

Hardware and software
verification [Kropf, 2013, Silva et al., 2008]

Determining the locations of production
and storage facilities and facility layout
optimization [Azadivar and Wang, 2000]

Scheduling: e.g. air traffic, course times in
universities, shifts in workplaces [Lau, 1996]




Many problems are NP-hard or harder

Why try to solve them exactly?
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Many problems are NP-hard or harder

Why try to solve them exactly?

Exact solutions save time, money, resources

Algorithms perform much better than worst—case on real-world
problems

Exactly solve simplified problems for better approximations
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Impractical to develop algoritms for every problem and every
variation

Model problem using a constraint language

Solve using a generic algorithm (solver) for that constraint
language

Easy to reformulate and refine problem definition

Solver development benefits many different problem domains



Many approaches to model and solve constrained optimization
problems:

Integer linear programming (IP / LP)

Finite-domain constraint satisfaction/optimization (CP)
Boolean satisfiability (SAT)

Maximum satisfiability (MaxSAT)

Prolog, Answer set programming (ASP), SMT, etc ...
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Maximize or minimize a linear objective function f:
f(X1,...yXn) = Wixy + -+ + WpXp
Subject to linear constraints of type:
aixy+---+apxp <k or aixy+-c-+apxy > k

NP-hard if we restrict x; to integer values
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Given a collection of elements U and a set S of sets sp,...,s, C U
A hitting set H of S contains at least one element from each s;

NP—hard problem: Find smallest or minimum-cost H [Karp, 1972]
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Minimum hitting set has a simple IP formulation:
For each element e in U, create a binary variable x,

Meaning: x, =1 if e € H otherwise x, =0
minimize Z Xe,

Single linear constraint for each s:

subject to er >1 Vse S

ecs



First NP—complete problem [Cook, 1971]

Given a propositional logic formula, does a truth assignment
exist that satisfies the formula?

Polynomial transformation to equivalent conjunctive normal
form (CNF) formula [Tseitin, 1983]
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Variables: x1,x2,x3, . ..
Literals: variable x; or its negation —x;

Clauses: disjunction (logical OR) of literals
e.g. x1V-x2V X3

CNF Formula: conjunction (logical AND) of clauses
e.g. (x1Vx2)A(=x3) A (x2) A (x1V —x2 V —x3)
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Truth assignment: 7 : X — {0, 1} gives each variable x; a
value of 0 or 1

Literals: x; is satisfied if 7(x;) =1
—x; is satisfied if 7(x;) =0

Clauses: satisfied if at least one of its literals is satisfied

CNF Formula: satisfied if all of its clauses are satisfied
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(x1Vx2Vx3)A
(—x1 VX2 V x3) A
(x1V—x2 V x3) A
= (x1 Vx2V-x3)A
(mx1Vx V x3) A
(x1 V—xa V—x3) A
(

X1V xo V —\X3)
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Satisfiable?
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(x1Vx2Vx3)A
(—x1 VX2 V x3) A
(x1 V=x2V x3) A
= (x1 Vx2V-x3)A
(mx1Vx V x3) A
(x1 V—xa V—x3) A
(—x1 V x2 V —x3)
Satisfiable?

T:{x1=1,%=0x3=1}
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(1 VxaVos) A
(—x1 VX2 V x3) A
(1 V0V x3) A
F=(qVxV-x3)A
(mx1 V0 Vo) A
(x1 V0V =x3) A
(—x1 V 0 V —x3)

Satisfiable? YES

T:{x1=1,%=0x3 =1}
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Clauses are very simple constraints, easy to reason about

More complex constraints must be encoded in CNF form to be used
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Clauses are very simple constraints, easy to reason about

More complex constraints must be encoded in CNF form to be used
Example: "Exactly one of x1, x2, x3 is true"
(x1 V x2 V x3) "At least one of x1, x2, x3 is true"

(—|X1 Vv —\Xz)
(—x2 V —x3) "At least one of each pair of xi, x2, x3 is false"

(—\Xl Vv ﬂX3)
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SAT solvers very efficient on real-world problems
Often handle up to millions of variables and clauses

Constraint driven clause learning (CDCL) algorithm implicitly
exploits structure

Solvers provide satisfying assignment or proof of unsatisfiability

15 /34



An optimization extension of SAT

Given an unsatisfiable formula F, find a truth assignment 7 that
maximizes the number of satisfied clauses
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An optimization extension of SAT

Given an unsatisfiable formula F, find a truth assignment 7 that
maximizes the number of satisfied clauses

Example:
F = (X1 V X2) /\(ﬁXl V XQ)/\ (Xl V —|X2) /\(ﬁXl V —\X2) /\(ﬁXl)/\ (XQ)

T:{x1=0,%=1}
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An optimization extension of SAT

Given an unsatisfiable formula F, find a truth assignment 7 that
maximizes the number of satisfied clauses

Example:
F= (Xl V X2) /\(ﬁXl V X2)/\(X1 V —|X2)/\(ﬁX1 V ﬁ)<2)/\(ﬁX1)/\(X2)

T:{x1=0,%=1}
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Assign positive weights to clauses

Maximize the total weight of satisfied clauses

Mandatory (hard) and optional (soft) clauses

Maximize the number of satisfied soft clauses such that all
hard clauses are satisfied
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Recently MaxSAT has been successfully utilized in many problem
domains.

design debugging [Chen et al., 2009]

software dependencies [Argelich et al., 2010]

data visualization [Bunte et al., 2014]

causal discovery [Hyttinen et al., 2014]
model-based diagnosis [Marques-Silva et al., 2015]
abstract argumentation [Wallner et al., 2016]
correlation clustering [Berg and Jarvisalo, 2017]

and more ...
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A subset of clauses k of a formula F, which cannot be satisfied by
the same truth assignment.

Found by SAT solver if formula unsatisfiable.
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A subset of clauses k of a formula F, which cannot be satisfied by
the same truth assignment.

Found by SAT solver if formula unsatisfiable.

Example:
F = (—\Xl vV X2) A (—\Xl V —\X2) AN (X1 V —|X2) VAN (X1 V X2) VAN (Xl) VAN (X2)
Has (minimal) cores:

{(—|X1 V X2), (—|X1 V —|X2), (X1 V —|X2), (Xl V X2)}

{(=a Vxe), (mx vV =x2), (1)}

{(=a vV =x), (a vV —x2), ()}
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[Martins et al., 2014]

Encode "k clauses in formula can be satisfied" as CNF
SAT solve original formula F with above constraints

Satisfiable? Increase k
Unsatisfiable? Decrease k

Repeat until largest satisfiable k found
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[Martins et al., 2014]

Encode "k clauses in formula can be satisfied" as CNF
SAT solve original formula F with above constraints

Satisfiable? Increase k
Unsatisfiable? Decrease k

Repeat until largest satisfiable k found

[Fu and Malik, 2006]

SAT solve the formula F

Satisfiable? Optimum found
Unsatisfiable? Get a core &

Relax F such that exactly one clause in k can be left unsatified

Repeat until satisfiable
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Deal poorly with diverse clause weights

SAT formula grows as constraints added or formula relaxed

21/34



Deal poorly with diverse clause weights

SAT formula grows as constraints added or formula relaxed

Natively handles weighted objective functions

IP solvers poorly suited to proving unsatisfiability

21/34



Deal poorly with diverse clause weights

SAT formula grows as constraints added or formula relaxed

Natively handles weighted objective functions

IP solvers poorly suited to proving unsatisfiability

|mp|iCit hitting set algorithm [Moreno-Centeno and Karp, 2013]
for MaxSAT [Davies, 2013]
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A MaxSAT solution cannot satisfy every clause in any core
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A MaxSAT solution cannot satisfy every clause in any core
For every core, a solution leaves at least one clause unsatisfied
Unsatisfied clauses form a hitting set of the set of all cores K

If the solution is optimal, this is a minimum hitting set



Do we need the set of all cores K?

Enough to find large enough K’ C K that K’ has same
minimum hitting set H
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Do we need the set of all cores K?

Enough to find large enough K’ C K that K’ has same
minimum hitting set H

How do we know if we have enough cores?
Test satisfiability of F\ H
If satisfiable, all cores are hit by H

Repeat:
SAT solve F\ H

Satisfiable? Optimal solution found
Unsatisfiable? Add core « to K

H < MinimumCostHittingSet(K)
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Input: F = (—x1 V x2,7) A (—x1 V —x2,8) A
(x1V =x2,7) A (x1 V x2,3) A(x1,3) A (x2,3)

SAT Solver

IP Solver
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IP Solver

SAT Solver
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IP Solver

—x1 V X2)/\
—x1 V ﬁXz)/\
x1 V —\XQ)/\
x1 V Xz)/\

— —

C
Co .
C3 .
Cy .
Cs ©

SAT?



UNSAT w

w
{C17527m

{C1, €, C3, C4}
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{c1,0,c3,¢c4} |OPT?
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e L L
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}

{Cly €, C3,

C3 . (X1 \Y —\XQ)/\

c (ﬁXl V X2)/\
C: (—|X1 V ﬁXz)/\

{ca}
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SAT?

S (mxa Vox)A
S (X V x)A
DV oxe)A

2 =

2 =

SXXX323

KSEL LS

S

(o)
AR

— —

| V| A (O |
W ww=~ o~

{Cly €, C3,

}
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S (mxa Vox)A
S (X V x)A
DV oxe)A

UNSAT w

w
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S (mxa Vox)A
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DV oxe)A
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OPT?
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Co -

S (mxa Vox)A
S (X V x)A
DV oxe)A
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Co -

S (mxa Vox)A
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C6

S (mxa Vox)A
S (X V x)A
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W(Cl) =7
W(CQ) =38
W(C3) =7
w(c) =3
w(cs) =3
W(C@) =3

c (ﬁXl V X2)/\

{Cla » €3, C4}

Cc3: (X1 vV —\XQ)/\ {C17 7C5}

[/ (Xl\/Xz)/\ { 7C37C6}

s 1 (x1)A

Co - (Xg)

X1 = 1,X2 =1

{ cost — ) Output
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[Saikko et al., 20164]

Implement implicit hitting set algorithm for MaxSAT from
scratch.

MiniSat as SAT solver

IBM CPLEX as IP solver
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[Saikko et al., 20164]

Implement implicit hitting set algorithm for MaxSAT from
scratch.

MiniSat as SAT solver
IBM CPLEX as IP solver

Entered in 2015, 2016, 2017 international evaluations of
state-of-the-art MaxSAT solvers

2015: 1st (of 29) in both categories of weighted partial
MaxSAT

2016: 2nd and 3rd
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LMHS solver development has led to:

In thesis: LMHS incremental API used to solve sub—problems
in Bayesian network structure solver

[JCAI'15: Integrated MaxSAT preprocessing [Berg et al., 2015]

KR'16: Implicit hitting—set approach extended to abductive
reasoning [Saikko et al., 2016b]

CP’17: Use IP technique of reduced—cost fixing in the algorithm
to simplify the problem during search [Bacchus et al., 2017]

IJCAI'L7: Domain—specific application for learning optimal
causal graphs [Hyttinen et al., 2017]
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Constrained optimization problems
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Constrained optimization problems

Boolean logic and satisfiability
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Constrained optimization problems
Boolean logic and satisfiability
MaxSAT



Constrained optimization problems
Boolean logic and satisfiability
MaxSAT

Implicit hitting set algorithms



Constrained optimization problems
Boolean logic and satisfiability
MaxSAT

Implicit hitting set algorithms

The LMHS solver and recent work



Questions?

Slides with complete references at
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http://cs.helsinki.fi/u/psaikko/msc-slides.pdf

Logical reasoning problem:

Given a theory T, set of possible
hypothesis H, observations M:

Find a subset of H that is consistent with
T and entails M.

¥ §—complete, harder than NP

Extend IHS algorithm with two—phase core
extraction

KR paper [Saikko et al., 2016b]
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LMHS with domain—specific

features

Improves on state-of-the-art

performance

IJCAI paper [Hyttinen et al., 2017]

Precomputed cores

Tighter bounds from
underlying graph

solving time per instance (s)

0

Core extraction heuristics

2000 4000 6000

Real-world data, 6-10 nodes, 240-11520 soft c
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D @‘G

nstraints

« Dseptor

Maxino

QMaxSAT

LMHS

° MaxHS
MSCG15b
MSCG15a
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° OpenWBO

<& CPLEX

-

10 20 30 40 50
instances (sorted for each line)
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Solving linux upgradeability problems using boolean optimization.

Facility layout optimization using simulation and genetic algorithms.

Reduced cost fixing in maxsat.

Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability.

Improving the effectiveness of SAT-based preprocessing for MaxSAT.

Optimal neighborhood preserving visualization by maximum satisfiability.

Spatial and temporal design debug using partial maxsat.

31

34



) & W W W & @

The complexity of theorem-proving procedures.

Solving MAXSAT by Decoupling Optimization and Satisfaction.

On solving the partial MAX-SAT problem.

Constraint-based causal discovery: Conflict resolution with answer set programming.

A core-guided approach to learning optimal causal graphs.

Reducibility among combinatorial problems.

Introduction to Formal Hardware Verification.
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On the complexity of manpower shift scheduling.

Efficient model based diagnosis with maximum satisfiability.

Open-WBO: A modular MaxSAT solver,.

The implicit hitting set approach to solve combinatorial optimization problems with an application to
multigenome alignment.

LMHS: A SAT-IP hybrid maxsat solver.

Implicit hitting set algorithms for reasoning beyond NP.

A survey of automated techniques for formal software verification.
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On the complexity of derivation in propositional calculus.

Complexity results and algorithms for extension enforcement in abstract argumentation.
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