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Abstract

Computationally hard optimization problems are commonplace not only in
theory but also in practice in many real-world domains. Even determining
whether a solution exists can be NP-complete or harder. Good, ideally
globally optimal, solutions to instances of such problems can save money,
time, or other resources.

We focus on a particular generic framework for solving constraint opti-
mization problems, the so-called implicit hitting set (IHS) approach. The
approach is based on a theory of duality between solutions and sets of mu-
tually conflicting constraints underlying a problem. Recent years have seen
a number of new instantiations of the IHS approach for various problems
and constraint languages.

As the main contributions, we present novel instantiations of this generic al-
gorithmic approach to four different NP-hard problem domains: maximum
satisfiability (MaxSAT), learning optimal causal graphs, propositional ab-
duction, and answer set programming (ASP). For MaxSAT, we build on
an existing IHS algorithm with a fresh implementation and new methods
for integrating preprocessing. We study a specific application of this IHS
approach to MaxSAT for learning optimal causal graphs. In particular
we develop a number of domain-specific search techniques to specialize the
IHS algorithm for the problem. Furthermore, we consider two optimization
settings where the corresponding decision problem is beyond NP, in these
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cases ΣP
2 -hard. In the first, we compute optimal explanations for proposi-

tional abduction problems. In the second, we solve optimization problems
expressed as answer set programs with disjunctive rules.

For each problem domain, we empirically evaluate the resulting algorithm
and contribute an open-source implementation. These implementations
improve or complement the state of the art in their respective domains.

Computing Reviews (2012) Categories and Subject
Descriptors:

Mathematics of computing→Combinatorial optimization
Theory of computation→Constraint and logic programming
Artificial intelligence→Logic programming and answer set programming

General Terms:
algorithms, exact optimization, declarative programming

Additional Key Words and Phrases:
constraint optimization, implicit hitting set algorithms, satisfiability,
maximum satisfiability, MaxSAT, propositional logic, abduction, causal
discovery
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Chapter 1

Introduction

In this thesis we develop constraint optimization procedures for computa-
tionally difficult problems. Optimization problems are found where many
possible solutions exist but we prefer some of them over others. This pref-
erence might be for e.g. the cheapest, fastest, or most probable solution.
Many interesting cases are computationally difficult, even determining if a
solution exists can be NP-complete or in a complexity class beyond NP.

Various types of approaches for solving optimization problems exist.
Local search algorithms [81] repeatedly explore the neighborhood of a cur-
rent best solution for better results. They are computationally efficient
and scalable, but do not give any guarantees on the quality of a found
solution. Approximation algorithms [155] give stronger guarantees on how
much the cost of a solution differs from an optimal one. Exact optimization
algorithms find a provably globally optimal solution but may not terminate
within a “reasonable” amount of time on all inputs. Naturally we would
like to obtain globally optimal solutions where it is possible to compute
them. Compared to an approximation, an optimal solution can save time,
money, or other resources depending on the application. In cases where it
is not feasible to compute an optimal solution to the original problem, a
simplified version can be solved exactly to get a better approximation.

As an alternative to application-specific algorithms, hard optimization
problems can be solved declaratively. Specifically we consider different
declarative constraint programming paradigms, where problems are de-
scribed in a generic manner as a set of constraints. The set of constraints
is then solved by an algorithm, or solver, for that constraint language. The
types of constraints vary by domain. Examples include linear inequalities
as linear programming (LP) [142] constraints and disjunctions of literals
as Boolean satisfiability (SAT) [63] constraints. Constraint programming
approaches are popular for a number of reasons. The task of modeling a
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2 1 Introduction

problem as a set of constraints can be more straightforward than devising
an algorithm. Due to the large body of work behind them, solvers targeting
these constraint languages may even be more efficient than an algorithm
specialized for the problem. Sets of constraints are very extensible, as new
constraints can be added without changes to the solver.

Integer programming (IP) [142] has long been a standard declarative
approach for solving hard optimization problems. Integer programs consist
of a linear objective function and linear inequalities over integer (and con-
tinuous) variables. Logic-based optimization languages such as maximum
satisfiability (MaxSAT) [101] have recently seen increased use following the
success of practical algorithms (solvers) for SAT. Solvers for optimization
with logic-based languages are commonly implemented iteratively as a se-
quence of invocations of a decision procedure.

In this thesis we focus on implicit hitting set (IHS) algorithms [34,113],
which combine IP and logic-based procedures by separating the decision
and optimization aspects of a problem. The approach is intuitively attrac-
tive because e.g. SAT solvers excel at proving unsatisfiability (non-existence
of a solution) while IP solvers are well-suited to dealing with objective func-
tions with large coefficients. An implicit hitting set procedure iteratively
identifies subsets of constraints that cannot be simultaneously satisfied (a
decision problem) and computes the least costly way to leave out a con-
straint from each of those subsets (an optimization problem).

The fundamental ideas behind implicit hitting set algorithms can be
traced back at least to the works of Reggia et al. [131] and Reiter [132] on
diagnosis. Reggia et al. proposed a set-covering based diagnostic system
motivated by applications in medicine. Reiter’s work on fault diagnosis of
systems (e.g. digital circuits) described in first-order logic aimed to enu-
merate explanations of observed abnormal operation of a system. Recently
this work on diagnosis has been revisited in an implicit hitting set context
with an exploration of the hitting set duality between conflicts and diag-
noses [147] and a new approach for diagnosing multiple observations [86].

Parker and Ryan [121] proposed an implicit hitting set algorithm for
solving the maximum-weight feasible subsystem (MAX-FS) problem for
an inconsistent set of linear inequalities Ax ≤ b. Their approach solves
the problem by finding a minimum-weight cover (i.e. hitting set) of irre-
ducible inconsistent subsystems (IIS) [35,154]. More recent work by Chan-
drasekaran et al. [34] and Moreno-Centeno and Karp [113] proposed implicit
hitting set algorithms as a general framework, applicable to a wide range
of problems including Max Cut, Max-2SAT, and the traveling salesper-
son problem. In contrast to this thesis, both restrict their approach to
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polynomial-time oracles for testing the feasibility of a hitting set, empha-
sizing the difficulty of computing minimum hitting sets instead.

Implicit hitting set algorithms have seen practical use in a variety of
problem domains. In particular, instantiations of the implicit hitting set
framework have been developed for many constraint programming para-
digms, including MaxSAT [44], Horn MaxSAT [105], maximum satisfiability
modulo theories (MaxSMT) [37,62], quantified MaxSAT (QMaxSAT) [85],
and weighted constraint satisfaction problems (WCSP) [48]. An application
of an implicit hitting set algorithm can also bear resemblance [45, 48] to a
logic-based Benders decomposition [80]. Another notable application is in
computing smallest minimal unsatisfiable subsets (SMUS) [88].

The more general concept of hitting set duality is also widely explored
in the context of MUS computation and enumeration [13,18,102,129]. Like-
wise algorithms exploiting this type of duality have been proposed for enu-
meration in a data mining setting [72, 73, 153]. A similar hitting set dual-
ity between prime implicates and prime implicants [133] has been used in
compilation of non-clausal formulas [128] and computing Horn least upper
bounds [112].

1.1 Focus of the Thesis

We investigate the use of implicit hitting set algorithms for optimization
problems in NP and beyond. A special focus is placed on practical consid-
erations and heuristics for implementing IHS algorithms. We contribute an
open-source implementation for each use of the IHS algorithm studied in
this thesis.

This thesis is based on the following original publications, which we
will refer to as Papers I-V. The papers are reprinted at the end of the print
version of the thesis.

I Paul Saikko, Jeremias Berg, and Matti Järvisalo, LMHS: A SAT-
IP Hybrid MaxSAT Solver. In Proceedings of the 19th Interna-
tional Conference on Theory and Applications of Satisfiability Testing,
volume 9710 of Lecture Notes in Computer Science, pages 539–546.
Springer, 2016.

II Jeremias Berg, Paul Saikko, and Matti Järvisalo, Improving the
Effectiveness of SAT-Based Preprocessing for MaxSAT. In
Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, pages 239–245. AAAI Press, 2015.
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III Antti Hyttinen, Paul Saikko, and Matti Järvisalo, A Core-Guided
Approach to Learning Optimal Causal Graphs. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, pages 645–651. IJCAI, 2017.

IV Paul Saikko, Johannes P. Wallner, and Matti Järvisalo, Implicit Hit-
ting Set Algorithms for Reasoning Beyond NP. In Proceedings
of the Fifteenth International Conference on Principles of Knowledge
Representation and Reasoning, pages 104–113. AAAI Press, 2016.

V Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo, A
Hybrid Approach to Optimization in Answer Set Program-
ming. In Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning, pages 32–41.
AAAI Press, 2018.

In particular, we consider applications of the IHS approach to MaxSAT
(Papers I and II), causal structure discovery (Paper III), propositional ab-
duction (Paper IV), and answer set programming (Paper V).

Papers I and II build on earlier work on implicit hitting set algo-
rithms [43–46] and preprocessing for MaxSAT [23,24]. Paper I describes the
LMHS MaxSAT solver and Paper II details the integration of preprocessing
with the implicit hitting set algorithm. Our work takes better advantage
of preprocessing by instantiating the implicit hitting set algorithm to opti-
mize directly over label variables introduced by preprocessing. This tight
integration of preprocessing contributed to the success of LMHS in the 2015
MaxSAT evaluation.

In Paper III we present a domain-specific application of the implicit hit-
ting set algorithm. We instantiate the algorithm for the task of computing
optimal causal graphs, showing that domain knowledge can be integrated
with the implicit hitting set algorithm to enhance it. Our approach bene-
fits from both established SAT and IP solver technology as well as search
techniques specific to causal graphs. Domain-specific cores, an incremental
encoding, and bounds-based hardening all contribute to the performance of
the resulting solver, which surpassed the state of the art for the problem.

Paper IV generalizes the implicit hitting set framework [34,113] to op-
timization problems beyond NP. We demonstrate the viability of the ap-
proach by instantiating the framework for propositional abduction, which
is a ΣP

2 -hard problem [56]. For empirical evidence of its effectiveness, we
compare our algorithm to an approach based on a disjunctive answer set
programming encoding.
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Paper V instantiates the implicit hitting set approach for optimization
in answer set programming. We take advantage of recent core-based algo-
rithms to realize a practical implementation of the IHS algorithm. With
support for disjunctive rules, this also applies the implicit hitting set ap-
proach to a domain beyond NP. In addition to previously used search tech-
niques, we develop improvements specific to answer set programming based
on the Clark’s completion of a program. The resulting solver improves upon
existing core-based solvers for ASP.

Beyond the articles included in this thesis, the author has made fur-
ther contributions as part of the doctoral studies. These include further
work on preprocessing for MaxSAT [28, 29, 97] which does not focus on
the implicit hitting set approach, work on reduced-cost fixing for Max-
SAT [16,17] and an application of the LMHS solver for computing optimal
cutting planes [137].

1.2 Author Contributions

All papers were jointly written by their authors. Other contributions by
the present author are as follows:

Paper I: The present author implemented and maintained the LMHS
solver, submitted it in the MaxSAT evaluations, and ran all of the ex-
periments.

Paper II: The present author integrated the preprocessor into the LMHS
solver. The use of the preprocessing techniques in a MaxSAT context was
investigated by Jeremias Berg.

Paper III: The Dseptor system was implemented jointly with Antti Hyt-
tinen as an extension of the LMHS solver of the present author.

Paper IV: The present author implemented the AbHS procedure, devel-
oped the improvements of AbHS+, and ran all of the experiments. The
computational complexity results are due to Johannes Wallner.

Paper V: The present author implemented the ASP-HS solver, using the
WASP solver of Carmine Dodaro and Mario Alviano, and ran all of the
experiments. In-depth analysis of runtime results was done jointly with
Matti Järvisalo.
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1.3 Organization of the Thesis

We begin with a short review of concepts useful for the main contributions
of the thesis. Chapter 2 consists of preliminaries on satisfiability, integer
programming, and hitting sets. Chapter 3 then introduces the implicit hit-
ting set problem and the generic implicit hitting set approach, which we
instantiate in Papers I–V. The main contributions of the thesis are pre-
sented in Chapters 4–7. Chapters 4 and 5 consider the NP-hard problems
of Papers I–III, while Chapters 6 and 7 look at problems beyond NP from
Papers IV and V. To conclude the thesis, we discuss interesting directions
for further work in Chapter 8.



Chapter 2

Preliminaries

In this chapter we formalize the concepts of hitting sets and implicit hit-
ting set algorithms on which the contributions of this thesis build. We also
review concepts related to Boolean satisfiability (SAT) and integer pro-
gramming (IP), which are useful for understanding the use of SAT and IP
solvers in the rest of the thesis. We begin with preliminaries on SAT and
IP followed by a formal definition of the (explicit) hitting set problem.

2.1 Boolean Satisfiability

Boolean satisfiability (SAT) [63] is the classical NP-complete problem [40]
of determining whether there exists a truth assignment that satisfies a given
propositional formula. Without loss of generality we consider only formulas
in conjunctive normal form (CNF). Arbitrary propositional formulas can
be converted to CNF by basic rules of Boolean algebra [127], though this
can result in an exponential increase in the size of the formula. However,
the well-known Tseitin transformation [152] introduces at most a linear
number of new variables and clauses. The structure of CNF formulas is
simple.

• A literal l is a Boolean variable or its negation, x or ¬x.
• A clause C of length m is a disjunction of literals, l1 ∨ · · · ∨ lm.

• A formula F with k clauses is a conjunction C1 ∧ · · · ∧ Ck.

Where convenient we will treat a CNF formula F as the set of its clauses
and a clause C as the set of its literals.

A complete truth assignment τ : X → {0, 1}n assigns a value of 0 or
1 to each variable x1, . . . , xn. For ease of notation, we lift τ(·) to literals,
clauses, and formulas.

7



8 2 Preliminaries

• A literal l is satisfied, τ(l) = 1, if l is a positive literal x and τ(x) = 1
or if l is a negative literal ¬x and τ(x) = 0.

• A clause C is satisfied, τ(C) = 1, if at least one of its literals is
satisfied.

• A formula F is satisfied, τ(F ) = 1, if all of its clauses are satisfied.

If τ is a satisfying truth assignment for F we may also say that (the set of
literals satisfied by) τ is a model of F , denoted by τ |= F . A formula F is
satisfiable if a truth assignment τ for which τ(F ) = 1 exists.

Computer programs which take as input a CNF formula F and search
for a satisfying assignment are known as SAT solvers [109]. A complete
solver is guaranteed to find a solution in finite time if one exists while
an incomplete solver is not. Many complete solvers also produce a proof
of unsatisfiability if no solution exists [71, 157]. Driven by yearly compe-
titions [90], SAT solvers have become efficient tools for attacking encod-
ings of large-scale real-world problems. SAT solvers are commonly used in
a “model-and-solve” workflow, using CNF formulas as a declarative pro-
gramming language. In general terms, suppose that we are given a problem
instance I and we want to find a solution soln(I) of I. Rather than de-
veloping an algorithm to solve instances of this problem, it can be more
convenient to model the problem in propositional logic and convert I to
a CNF formula FI such that satisfying assignments τ to FI correspond to
solutions of I. Such a τ can be found using an off-the-shelf SAT solver and
interpreted as a solution to I. Figure 2.1 visualizes this process.

Variations of the conflict-driven clause learning (CDCL) algorithm [109]
represent the current state of the art in complete solvers for non-random
SAT instances. A long line of solvers, including GRASP [110], Chaff [116],
MiniSat [52], Glucose [15], and Lingeling [30], have refined heuristics and
search techniques for CDCL. The technical details of implementing SAT
solvers are beyond the scope of this thesis. We utilize them in essentially a
black-box manner within optimization procedures both for determining the
satisfiability of a formula and producing a truth assignment (if satisfiable)
or isolating an unsatisfiable subset of clauses (if unsatisfiable).

I
model−−−→ FI

solve−−−→ τ |= FI
interpret−−−−−→ soln(I)

Figure 2.1: The model and solve workflow.
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2.2 Integer Programming

An integer programming (IP) [142] problem over n variables x1, . . . , xn con-
sists of a linear objective function, m linear constraints (inequalities), and
integrality constraints. The goal is to maximize (or minimize) an objective
function

f(x̄) = w1x1 + · · ·+ wnxn

with coefficients w1, . . . , wn, subject to linear constraints of the form

aj1x1 + · · ·+ ajnxn ≤ bj for 1 ≤ j ≤ m,

often written as Ax ≤ b. Unlike linear programs, (mixed) integer pro-
grams also constrain (a subset) of the variables to integer values. In the
applications we consider in this thesis, the variables are often binary,

xi ∈ {0, 1} for 1 ≤ i ≤ n.

Integer programming with binary variables (also known as 0-1 integer pro-
gramming) is NP-complete [94]. However, the linear programming (LP)
relaxation obtained by removing the integrality constraints can be solved
in polynomial time [95]. In this thesis, we use these LP relaxations to ob-
tain lower bounds for IP problems. Integer programming is widely used in
areas of operations research including planning, scheduling, and network
optimization. These problems are not only of theoretical interest, commer-
cial solvers such as IBM CPLEX [84] and Gurobi [74] are heavily optimized
for practical applications.

2.3 Hitting Sets

Given a universe of elements U = {e1, . . . , em} and a collection of subsets
of these elements S = {s1, . . . , sn : si ⊆ U}, a hitting set H of S includes
at least one element of each si. In other words H ∩ si 
= ∅ for all si ∈ S.
We use H to denote the collection of all hitting sets of S. We can assume
all supersets of any si ∈ S to also be in S as this does not change H.
The hitting set problem we consider is an equivalent reformulation of the
set cover problem, so it is NP-complete to determine if a hitting set of
size k exists [94]. Note that this problem setting differs from the hitting
set problem of Karp’s 21 NP-complete problems [94], which instead asks if
there exists a set H such that |H ∩ si| = 1 for all 1 ≤ i ≤ n.
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Example 2.1. In the following figure, let U be the set of filled circles
and S the boxes. The gray circles represent a hitting set of S.

Commonly the elements of S represent subsets of U that are in some
sense inconsistent. A subset of U which is not a superset of any s ∈ S is
then consistent. Consistent subsets of U and elements of S are linked by
hitting sets. The property of hitting set duality [31,47,131,132] states that

1. a hitting set of S is the complement of a consistent subset of U , and
conversely

2. a hitting set of H is a superset of a set in S.
A similar property holds for minimal hitting sets. In case (1), if U \H is
not consistent, there exists s ∈ S such that s ⊆ U \H, so H is not a hitting
set of S. The reasoning for case (2) is essentially symmetric. This simple
property is the basis for the implicit hitting set algorithms considered in
this thesis.

In the context of optimization, the minimum hitting set problem is to
find a smallest (by cardinality) hitting set in H. Generalizing the problem,
costs or weights can be assigned to each e ∈ U by a function c : U → N.
Extending the cost function to H ⊆ U , c(H) =

∑
e∈H c(e). An instance of

this minimum-cost hitting set (MCHS) problem is a tuple (U,S, c) where
the goal is to find a hitting set Ĥ of S of smallest cost,

Ĥ ∈ argmin
H∈H

c(H).

A standard method for solving the MCHS problem is to reformulate it
as an integer program

Minimize

m∑

i=0

xi · c(ei)

Subject to
∑

ei∈sj
xi ≥ 1 for all sj ∈ S,

xi ∈ {0, 1} for all ei ∈ U.

(2.1)
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In words, the hitting set IP introduces for each element ei in U a binary
selector variable. Constraints for each sj ∈ S state that at least one element
in each sj is selected, enforcing that the true selector variables of a solution
to the IP correspond to a hitting set of S. The objective function minimizes
the total weight of selected elements.

In later chapters we see cases where it is enough to compute a “good
enough” hitting set instead of an optimal one. When an approximation is
sufficient, Chvátal’s greedy heuristic for weighted set-covering [36] can be
adapted to the hitting set problem. This simple polynomial-time procedure
produces a hitting set with cost within about a lnn factor of optimal.
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Chapter 3

The Implicit Hitting Set Approach

In this section we recall the implicit hitting set approach on which the
contributions of this thesis build. Following Paper IV, we formally define
the implicit hitting set problem and a generic algorithm for solving it. We
also give an overview of previously proposed heuristic search techniques for
improving the algorithm.

3.1 Implicit Hitting Sets

In contrast to the (explicit) hitting set problem, in an implicit hitting set
problem the collection of subsets S to hit is either not known or not directly
accessible. Instead, S is implicitly expressed by p : P(U) → {true, false},
a predicate which tests the feasibility of a set H ⊆ U . Given a hitting set
candidate H, p(H) = true if and only if H hits every element of S.

Implicit hitting set problems often stem from explicit hitting set prob-
lems where it is intractable to enumerate S due to its size or the difficulty of
computing its elements, or both. An implicit hitting set algorithm aims to
find the optimal hitting set without direct knowledge of every element of S.
We use an iterative approach for solving these problems, which alternates
between constructing hitting set candidates (underapproximations) H and
evaluating p(H).

The applications of Papers I–V solve implicit hitting set problems in
different contexts. In each case U is a set of constraints, with syntax and
semantics depending on the application. To make our terminology consis-
tent with these applications, we will call members of S cores. In later chap-
ters we call constraints over U which are not in S non-core constraints [45]
and hitting sets computed for some S′ ⊆ S which are not minimum-cost
non-optimal hitting sets.

13
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3.2 Generic Algorithm

Implicit hitting set algorithms were first proposed as a generic optimiza-
tion framework by Chandrasekaran et al. [34] and Moreno-Centeno and
Karp [113]. Their approach was restricted to problems where computing
p(H) and extracting a core is possible in polynomial time. The approach we
take in Paper IV lifts the framework to problems beyond NP by considering
arbitrarily hard predicates p and core extraction procedures.

Algorithm 1 outlines this generic solution to implicit hitting set prob-
lems. It either returns a minimum-cost hitting set of S if one exists (Line 6)
or reports that no solutions exist (Line 10) in the special case that ∅ ∈ S.
The algorithm maintains a subset of identified cores S′ ⊆ S, initially an
empty set, and a hitting set candidate H, also initially an empty set.

As long as p(H) = false, the algorithm will identify a new core and
add it to S′ (Line 8). An MCHS-oracle (e.g. an IP solver) is then used
to find a minimum-cost hitting set for S′ and update H (Line 9). New
cores are identified with the extractcore procedure. The implementation of
this procedure may vary by application. In the most generic case we can
set extractcore(H) = U \ H because if H is not a hitting set of S, then
every hitting set of S must contain an element of U \H. Depending on the
application, the functions of p and extractcore can be accomplished by the
same procedure. For example in the case of MaxSAT in Chapter 4, a SAT
solver produces an unsatisfiable core if the predicate check fails.

When p(H) = true on Line 5, H is by construction a minimum-cost
hitting set for S. It is not immediately obvious that Algorithm 1 is correct
in that it produces an optimal solution and halts for all instances of the im-
plicit hitting set problem. To formalize the correctness of the algorithm we

Algorithm 1 A generic implicit hitting set algorithm.

1: procedure IHS(p, c)
2: H ← ∅
3: S′ ← ∅
4: while ∅ /∈ S′ do
5: if p(H) then
6: return H
7: else
8: S′ ← S′ ∪ {extractcore(H)}
9: H ← MCHS(S′, c)

10: return “no solution”
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adapt the proof of Davies and Bacchus, presented originally in the context
of MaxSAT [44].

Theorem 3.1. Algorithm 1 computes a minimum-cost hitting set of S and
halts.

Proof. Firstly, Algorithm 1 returns H only if it is feasible (i.e. p(H) is true
because it hits every core of S). The returned set H is a MCHS for some
S′ ⊆ S. It must then also be a MCHS for S.

Secondly, after each iteration of the loop, H intersects (at least) the
cores of S which are in S′. On each iteration, the algorithm either termi-
nates or finds s ∈ S not hit by H and adds it to S′. Since H hits each core
of S′, this core s must be distinct from all cores previously added to S′.
The algorithm must terminate since U and thus also S is finite.

The generic implicit hitting set algorithm gives us a powerful frame-
work for solving hard optimization problems. In this thesis we instanti-
ate the algorithm for several constraint optimization settings. In principle
Algorithm 1 could be instantiated for any constraint language, given the
predicate p and a core extraction procedure.

Example 3.1. Continuing in the (unweighted) setting of Example 2.1,
we illustrate a sequence of steps which could be taken by Algorithm 1.
At each step, the gray circles representH and the black boxes represent
S′. At step 5, the algorithm has found an optimal hitting set and can
terminate. The last step shows a core which is implicitly hit.

1) 2)

3) 4)

5) ∗)



16 3 The Implicit Hitting Set Approach

3.3 Heuristics for IHS

In the introduction we gave a short overview of applications of the implicit
hitting set approach. A number of these applications introduced useful
heuristics which are applicable to implicit hitting set algorithms and the
generic setting of Algorithm 1. Though they do not improve on the the-
oretical worst-case running time bounds, these heuristics cut down on the
number of times the predicate p must be checked or the number of calls to
the extractcore procedure or MCHS solver required in practice.

The work of Parker and Ryan [121], which uses an implicit hitting set
algorithm to compute maximum feasible subsystems, suggests the use of a
greedy hitting set algorithm [36] and finding an initial disjoint set of cores
(irreducible inconsistent subsystems in the original context). They note
that the hitting set problem can be solved heuristically at intermediate
steps of the algorithm and use the well-known greedy approximation for
this task. To ensure an optimal solution it is only necessary to solve the
hitting set problem exactly at the last iteration. They also observe that
the initial disjoint set of cores has the benefit of producing a lower bound
on the size of the optimal hitting set.

Davies and Bacchus [44] make extensive use of heuristics in their implicit
hitting set algorithm for MaxSAT. They implement a core minimization
procedure to reduce the size of the cores passed to the hitting set solver.
Giving the hitting set solver a core s ∈ S that is not subset-minimal with
respect to inclusion in S can cause the implicit hitting set algorithm to re-
quire more interations to terminate. However, finding a minimal core (i.e.
MUS extraction [22, 108]) requires more computation by the extractcore
procedure. Davies and Bacchus [44] also note the importance of core di-
versity. Simply put, the implicit hitting set algorithm will tend to require
fewer iterations when the core uncovered at each iteration is not similar
to cores found on previous iterations. Motivated by increasing core diver-
sity, the MaxHS algorithm introduces randomness to the SAT-oracle and
performs an initial disjoint phase. Subsequent work on the MaxHS algo-
rithm introduced yet more search heuristics, including the use of non-core
constraints [45, 46].

The minimum-cost hitting set problem is typically solved using an IP
solver so search techniques developed for integer programs can often find
use in implicit hitting set algorithms. For example, Moreno-Centeno and
Karp [113] use the LP relaxation of the hitting set IP to compute lower
bounds. Reduced-cost fixing techniques [41, 42] have also been applied to
implicit hitting set algorithms [16, 17]. We discuss some IP and LP based
techniques in Chapters 5 and 7.



Chapter 4

Maximum Satisfiability

In this chapter we discuss the contributions of this thesis to solving max-
imum satisfiability (MaxSAT) presented in Papers I and II. Following the
rapid development of efficient practical algorithms for Boolean satisfiability
(SAT), algorithms for MaxSAT which make use of these SAT procedures
are increasingly utilized for real-world optimization tasks. Recent prac-
tical applications of MaxSAT include several data analysis problems [25],
model-based diagnosis [106], data visualization [32], hardware and software
error localization [93,158], and scheduling problems [49]. Our contribution
is towards improving the generic MaxSAT solving procedures behind these
practical applications.

We begin with a discussion of MaxSAT to the extent necessary to cover
the contributions of Paper I and Paper II. An overview of the LMHS Max-
SAT solver presented in Paper I follows. The implicit hitting set algorithm
for MaxSAT was first implemented in the MaxHS solver [43]. We discuss
the differentiating features between our solver and MaxHS. In the latter
half of the chapter we take closer look at Paper II and one of the key
features of LMHS, the integration of preprocessing.

An implicit hitting set based algorithm is an attractive target for Max-
SAT preprocessing because it does not apply transformations which in-
crease the size of the formula during search. Intuitively, we expect this
to make the benefits of preprocessing simplifications to the formula last
longer. The use of SAT-based preprocessing techniques for MaxSAT is
made possible by the labeled CNF (LCNF) framework [23, 24]. We show
how these techniques can be applied more efficiently by instantiating the
implicit hitting set algorithm directly for LCNF formulas. A summary of
our experimental evaluation on the LMHS solver and subsequent related
work concludes the chapter.

17
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4.1 Maximum Satisfiability

Given an unsatisfiable formula, it is natural to ask what is the largest subset
of its clauses that can be simultaneously satisfied. This is the problem of
maximum satisfiability (MaxSAT) [101]. More formally, we want to find a
truth assignment τ̂ that satisfies as many clauses of a CNF formula F as
possible,

τ̂ ∈ argmax
τ

∑

C∈F
τ(C).

In practical applications there is often a need to enforce hard constraints
on the solution space or designate weights to clauses to prioritize them.
Weighted partial MaxSAT combines these generalizations of the MaxSAT
problem. Formally, an instance of the weighted partial MaxSAT problem is
a tuple (Fh, Fs, w) where Fh is a set of mandatory hard clauses, Fs a set of
optional soft clauses, and w : Fs → N assigns a positive weight to each soft
clause. The weight of a set of soft clauses S ⊆ Fs is the sum of the weights
of the clauses in the set, w(S) =

∑
C∈Fs

τ(C). Plain MaxSAT is then a
special case of weighted partial MaxSAT in which Fh = ∅ and w(C) = 1 for
all C ∈ Fs. The weighted partial generalization of MaxSAT sees so much
use that we will refer to it as MaxSAT from hereon.

Example 4.1. The following is a weighted partial MaxSAT instance.

Fh = {(x1 ∨ x2), (¬x1 ∨ ¬x2), (¬x1 ∨ x2 ∨ ¬x3), (x1 ∨ ¬x2 ∨ ¬x4)}
Fs = {(x1, 5), (x2, 7), (x3, 1), (x4, 4)}

Hard clauses (x1∨x2), (¬x1∨¬x2), (¬x1∨x2∨¬x3), and (x1∨¬x2∨¬x4)
must be satisfied and the cost function w assigns weights 5, 7, 1 and 4
to soft clauses (x1), (x2), (x3), (x4), respectively.

Extending the semantics of CNF formulas, a truth assignment τ is a
solution to a MaxSAT instance (Fh, Fs, w) if τ(Fh) = 1. Further, τ̂ is
optimal if the sum of the weights of soft clauses it satisfies is maximal,

τ̂ ∈ argmax
τ |=Fh

∑

C∈Fs

τ(C)w(C).

We say the cost of a MaxSAT solution τ is the sum of weights of soft clauses
not satisfied by τ ,

cost(τ) =
∑

C∈Fs

(1− τ(C))w(C).
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Example 4.2. Continuing with the formula of Example 4.1,

τ1 = {x1 = 0, x2 = 0, x3 = 1, x4 = 0}

is not a MaxSAT solution because τ1((x1∨x2)) = 0. The truth assign-
ment

τ2 = {x1 = 0, x2 = 1, x3 = 1, x4 = 0}
is a solution with cost 9, as it satisfies all soft clauses except (x1)
and (x4) which have weights 5 and 4, respectively. However, τ2 is not
optimal because

τ3 = {x1 = 1, x2 = 0, x3 = 0, x4 = 1}

is also a solution and has a cost of 8.

An unsatisfiable core of a MaxSAT instance (Fh, Fs, w) is a subset of
soft clauses κ ⊂ Fs such that Fh∪κ is not satisfiable. A core κ is minimal if
no subset of it is a core, that is, Fh∪κ′ is satisfiable for all κ′ � κ. Minimal
cores are also known as minimal unsatisfiable subsets, or MUSes.

Example 4.3. Taking again the formula (Fh, Fs, w) of Example 4.1,
the set of soft clauses {(x1, 5), (x2, 7), (x3, 1)} is a core of F , but not a
minimal core, since Fh∪{(x1, 5), (x2, 7)} is also unsatisfiable. In all, F
has minimal cores

{{(x1, 5), (x2, 7)}, {(x1, 5), (x3, 1)}, {(x3, 1), (x4, 4)}, {(x2, 7), (x4, 4)}
}
.

In practice, cores can be identified using a SAT solver which can solve
with assumptions [14,52]. These solvers can take as input, in addition to a
CNF formula F , a set of assumption literals A. The solver will then search
for a satisfying assignment to F which also satisfies the given assumptions.
If no such assignment exists, the solver can produce a subset of A which
was used in proving unsatisfiability. It is common practice to find a core of
a MaxSAT formula (Fh, Fs, w) by augmenting each soft clause Ci ∈ Fs with
a new, unique assumption variable ai to produce augmented soft clauses

F a
s = {(Ci ∨ ai) : Ci ∈ Fs}.

Solving Fh ∪ F a
s with assumptions A = {¬ai : Ci ∈ Fs} is then analogous

to solving Fh∪Fs with no assumptions. Due to the one-to-one relationship
between assumption variables and soft clauses, the subset of assumptions
used to prove unsatisfiability will correspond to a core of the MaxSAT
formula.
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4.2 Instantiating IHS for MaxSAT

The implicit hitting set algorithm can be instantiated for MaxSAT using
the concept of unsatisfiable cores. For the following, consider a MaxSAT
instance F = (Fh, Fs, w) and suppose that Fh is satisfiable and Fh ∪ Fs is
unsatisfiable.

Davies and Bacchus [44] explore an important relationship between hit-
ting sets and MaxSAT solutions. Let K be the set of all cores of F . Every
hitting set H of K corresponds to at least one MaxSAT solution of F , the
truth assignment(s) which satisfy Fh ∪ (Fs \ H). Conversely, every Max-
SAT solution τ corresponds to a hitting set of K, the set of soft clauses not
satisfied by τ . Moreover, if τ(Fh ∪ (Fs \H)) = 1, then cost(τ) ≤ w(H) and
if H is minimal, cost(τ) = w(H) [44]. It follows that an optimal MaxSAT
solution can be computed by first finding a minimum-weight hitting set Ĥ
of K and then solving the satisfiable CNF formula Fh ∪ (Fs \ Ĥ).

Example 4.4. The cores of Example 4.3 overlap as follows, illustrat-
ing the structure of the underlying hitting set problem.

x1

x2
x3

x4

Motivating the use of the IHS approach, there are cases in which it is
impractical to solve the hitting set problem directly because a MaxSAT
instance can have an exponential number of minimal cores. Using an ex-
ample of Davies and Bacchus [46] suppose that Fs = {(xi) : 1 ≤ i ≤ m}
and Fh is a CNF encoding of the cardinality constraint

∑m
i=1 xi <

m
2 . Now

if an assignment τ satisfies exactly m/2 soft clauses, then it does not satisfy
Fh so any set of m/2 soft clauses is a (minimal) core. There are

(
m

m/2

)
such

cores. However, the implicit hitting set algorithm gives us a way to find
the optimal solution without necessarily enumerating all cores.

Davies and Bacchus [43–46] first proposed the MaxHS algorithm, which
instantiates Algorithm 1 for MaxSAT. The structure of the algorithm is
loosely depicted in Figure 4.1. Initially the clauses of the MaxSAT instance
are input to the SAT solver and the cost function is input to the IP solver.
The algorithm alternates between calls to a SAT solver and calls to an IP
solver. The SAT solver attempts to satisfy the hard clauses Fh and the
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SAT Solver

Fh ∪ (Fs \H)

IP Solver

MCHS(K,w)

H

K ← K ∪ {κ}
unsat

Input

w : Fs → NFh ∪ Fs

Output τ

sat

Figure 4.1: The implicit hitting set algorithm for MaxSAT.

soft clauses not in the current hitting set Fs \ H. If the set of clauses is
unsatisfiable, a core κ is found by the SAT solver and the IP solver computes
a new optimal hitting set. Otherwise a satisfying assignment is found and
the algorithm terminates. By Theorem 3.1 and the earlier observation that
a hitting set corresponds to a solution with the same cost (and vice versa)
this solution will be optimal.

Example 4.5. Consider again the formula of Example 4.1,

Fh = {(x1 ∨ x2), (¬x1 ∨ ¬x2), (¬x1 ∨ x2 ∨ ¬x3), (x1 ∨ ¬x2 ∨ ¬x4)},
Fs = {(x1, 5), (x2, 7), (x3, 1), (x4, 4)}.

On the first iteration the implicit hitting set algorithm will begin with
an empty hitting set H0 = ∅ and thus try to satisfy Fh ∪ Fs. This
formula is unsatisfiable so the SAT solver will identify a core, say κ0 =
{(x1, 5), (x2, 7)}. The minimum-cost hitting set for the single core is
clearly H1 = {(x1, 5)} with cost c(H1) = 5 so the algorithm will next
try to satisfy Fh ∪ (Fs \H1). In all, the algorithm might consider the
following sequence of cores and hitting sets.
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i K H c(H) κ

0 ∅ ∅ 0 {x1, x2}
1 {{x1, x2}} {x1} 5 {x3, x4}
2 {{x1, x2}, {x3, x4}} {x1, x3} 6 {x2, x4}
3 {{x1, x2}, {x3, x4}, {x2, x4}} {x2, x3} 8 ∅

On the final iteration i = 3, Fh ∪ (Fs \H3) is satisfiable. This means
that H3 is a minimum-cost hitting set for all cores of (Fh, Fs, w), so
truth assignments which satisfy Fh ∪ (Fs \ H3) are optimal MaxSAT
solutions for (Fh, Fs, w). In this case the optimal solution is unique,

τ̂ = {x1 = 1, x2 = 0, x3 = 0, x4 = 1}.

The algorithm arrives at the solution without explicitly considering
every core of (Fh, Fs, w). The core {x1, x3} is implicitly hit by H3.

4.3 LMHS

Our MaxSAT solver LMHS, a from-scratch implementation of the implicit
hitting set algorithm, is introduced in Paper I. LMHS set itself apart in
several ways from the original implementation, MaxHS, including two key
differences in search techniques. The solver integrated novel preprocessing
techniques based on the so-called labeled CNF (LCNF) framework [23,24].
Preprocessing for MaxSAT is the topic of Paper II, the contributions of
which are covered in the next section.

LMHS also boosts core diversity by computing a disjoint set of cores
at every iteration of the solver, a technique later adapted to MaxHS as
well. This is in contrast to the initial disjoint phase seen in other core-
based algorithms, such as msu4 [107]. This simple heuristic was especially
effective on industrial instances, enabling LMHS to solve the greatest num-
ber of instances in the highly competitive class of complete solvers of the
weighted partial category of the 2015 MaxSAT evaluation. The results of
the evaluation are shown in Figure 4.2.

The solver includes a number of usability features not related to the
search algorithm itself.

Solution enumeration Simple command-line parameters enable Max-
SAT solution enumeration. LMHS can enumerate all solutions, all optimal
solutions, or a single solution for each unique set of satisfied soft clauses.
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Figure 4.2: Industrial category results of the 2015 MaxSAT Evaluation [12].

C++ API LMHS can also be used through its C++ library and API. Hard
and soft constraints as well as cores can be added to the working formula
incrementally. This functionality was used for example to compute cut-
ting planes within an IP-based procedure for learning optimal Bayesian
networks [137].

Interchangeable components The robustness of LMHS was increased
by the ability to change the IP and SAT components used by the solver.
The original release of LMHS supported a choice of IBM CPLEX [84] or
SCIP [2] for solving the hitting set IP and a choice of MiniSat [52] or
Lingeling [30] as a SAT solver.

4.4 Preprocessing

Preprocessing and inprocessing techniques have long been an integral part
of SAT solvers [51, 91, 92]. We use preprocessing to mean the application
of reversible satisfiability-preserving polynomial-time transformations to a
CNF formula to simplify it prior to solving. Figure 4.3 shows the place of
preprocessing in the model-and-solve workflow (recall Figure 2.1). Prepro-
cessing steps are applied to the CNF formula FI transforming it into an
equisatisfiable formula F ′

I . If a satisfying assignment τ ′ is found for F ′
I a

satisfying assignment τ for FI can be reconstructed from it based on the
preprocessing steps applied to FI .
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I
model−−−→FI

preprocess−−−−−−→F ′
I

solve−−−→τ ′ |=F ′
I

reconstruct−−−−−−−→τ |=FI
interpret−−−−−→soln(I)

Figure 4.3: Preprocessing in the model-and-solve workflow.

By comparison, the potential of preprocessing techniques for MaxSAT
has been less thoroughly explored. Paper II builds on recent work [23, 24]
to refine the use of well-known SAT preprocessing techniques of blocked
clause elimination (BCE) [91], bounded variable elimination (VE) [51], self-
subsuming resolution (SSR) [51], and subsumption elimination (SE) with
the implicit hitting set algorithm for MaxSAT. We investigate the use of
these techniques in conjunction with the LMHS solver of Paper I.

4.4.1 Labeled CNF formulas

Though SAT-based preprocessing techniques preserve satisfiability, they
cannot be used directly for MaxSAT [24] because they do not necessarily
preserve the set of optimal solutions of a formula. The labeled CNF (LCNF)
framework [23,24] has been proposed to remedy this problem.

A LCNF formula Φ is a set of pairs (C,L) where C is a clause and
L ⊂ N is a finite set of labels. We will use CL as shorthand for a labeled
clause (C,L) and denote the sets of clauses and labels of Φ with

Cl(Φ) = {C : CL ∈ Φ}
and

Lbls(Φ) =
⋃

CL∈Φ
L,

respectively. A LCNF formula Φ is satisfiable if Cl(Φ) is satisfiable. Given
a LCNF formula Φ, a set of labels M ⊆ Lbls(Φ) induces the subformula

Φ|M = {CL ∈ Φ : L ⊆ M}.
From a practical perspective, labels can be seen as a generalization of the
assumptions used in iterative SAT solving. Inducing Φ by a label set which
does not include a label l corresponds to removing from Φ each clause
associated with l. An unsatisfiable core κ ⊂ Lbls(Φ) of Φ is a label-set
such that Φ|κ is unsatisfiable, while a correction subset of Φ is a set of
labels R ⊂ Lbls(Φ) such that Φ|Lbls(Φ)\R is satisfiable. If we additionally
associate each label l ∈ Lbls(Φ) with a weight (or cost) c(l), we can de-
fine weighted maximum LCNF-satisfiability as the optimization problem of
finding a minimum-cost correction subset (MCS) of Φ.
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4.4.2 Applying SAT-based Preprocessing

The LCNF framework provides a way to apply SAT-based preprocessing
techniques for MaxSAT while preserving the cost of optimal solutions.
Given a MaxSAT instance (Fh, Fs, w),

1. lift the MaxSAT instance to a LCNF Φ,

2. apply LCNF-liftings of preprocessing techniques to Φ, transforming
it into a LCNF Φ′, and

3. convert Φ′ back to a MaxSAT instance.

An explanation of each step follows. A MaxSAT instance (Fh, Fs, w) can be
lifted to maximum LCNF-satisfiability by a simple transformation. First,
each soft clause Ci ∈ Fs is assigned a label li with weight c(li) = c(Ci).
Then, an equivalent LCNF instance Φ can be formed from the labeled
clauses {C∅ : C ∈ Fh} ∪ {C li

i : Ci ∈ Fs}. Hard clauses of the MaxSAT
instance are by definition present in an induced subformula Φ|M for any
M ⊆ Lbls(Φ) because they are given an empty label set.

The preprocessing techniques of VE, SSR, and SE can be adapted, or
lifted, to LCNF formulas. The lifted techniques and associated proofs of
correctness for these techniques were presented in Belov et al. [24]. Berg and
Järvisalo [27] later presented a general theorem of correctness for applying
SAT-based preprocessing. Informally, while the lifted techniques eliminate
variables or clauses from the formula, the structure of labels is preserved.
This allows the lifted preprocessing techniques to preserve the MUSes and
MCSes of a formula, a sufficient condition for the preprocessing technique
to preserve optimal solutions [24].

A labeled CNF can be easily converted to a MaxSAT instance by a
direct encoding [24] which introduces a new soft clause for each label. In
this way LCNF formulas can be solved by any off-the-shelf MaxSAT solver,
but it has been observed that introducing the new soft clauses can have a
negative impact on search [24].

The implicit hitting set algorithm can instead be instantiated for LCNF,
with subsets of labels instead of soft clauses as cores. In practice, the core
extraction process described in Section 4.1 for MaxSAT can be adapted to
LCNF formulas by using labels as assumptions. After preprocessing, many
clauses can be covered by the same label, making these label assumptions
possibly more powerful than the assumptions used for MaxSAT.
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Figure 4.4: Impact of preprocessing on solving times.

4.4.3 Experimental Evaluation

Paper II includes a thorough experimental evaluation on the use of prepro-
cessing with IHS and core-guided MaxSAT solvers. We report here on the
aspects most relevant to this thesis. The impact of preprocessing, evaluated
on all 624 weighted partial instances [11] of the 2014 MaxSAT evaluation, is
shown in Figure 4.4. We see that for both a core-guided solver (Eva) [117]
and our implementation of the implicit hitting set algorithm (MHS), the
direct application of preprocessing (Eva+pre and MHS+pre) is detrimental
to the performance of the solver. For reference the results are also compared
against MaxHS 2.5, (at the time of writing Paper II) the latest version of
the IHS-based MaxHS solver [43]. LMHS performs preprocessing and solv-
ing within the LCNF framework. In contrast to the direct application of
preprocessing (MHS+pre), we see a significant increase in the number of
instances solved compared to MHS.

4.4.4 Related Work

The work reported on in Paper II was directly continued in [28] and [29].
While Paper II efficiently integrated existing SAT-based techniques into
a MaxSAT solver, the following work developed novel MaxSAT-specific
techniques.
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A simple observation showed that label variables and group encod-
ings [77] can be detected prior to applying preprocessing and exploited
to great effect [28]. The MaxSAT preprocessing technique of subsumed
label elimination was introduced and evaluated in [29]. More formal anal-
ysis of the impact of preprocessing on core-guided and hitting set based
algorithms was later carried out in [26] and [27].

A dedicated MaxSAT preprocessor, MaxPre [97], was also developed as
an extension of the work of Paper II. MaxPre implements common SAT-
based preprocessing techniques for MaxSAT as well as label-based Max-
SAT specific techniques. It can be used as a standalone preprocessor or
integrated into a solver using its API.
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Chapter 5

Causal Discovery

This chapter gives an overview of the contributions of Paper III to learning,
or discovering, causal structures. We specialize the implicit hitting set
algorithm for a causal discovery task by extending the LMHS solver of
Paper I. The adaptability of the implicit hitting set approach allows us to
develop three problem-specific search techniques to boost the performance
of LMHS on these instances.

Graphical models, such as Markov and Bayesian networks [96], play
an important role in facilitating various probabilistic modeling tasks. A
graphical model represents a way of decomposing a joint probability func-
tion into a product of conditional probabilities. They provide a compact
representation of joint probability functions and allow for efficient and ac-
curate inference from observations [123, Ch. 1]. In the context of Paper III
our goal is to construct an optimal causal graph with which we can make
predictions under interventions. Some features of causal structures can be
inferred from passively observed data [123, Ch. 2], but they can be challeng-
ing to identify with a finite amount of data. In our setting this challenge
manifests itself as a combinatorial problem of optimally reconciling con-
flicting independence and dependence constraints.

While inexact algorithms such as constraint-based PC and FCI [126]
can solve these problems at the cost of accuracy [38], we aim to find glob-
ally optimal solutions. Exact methods for learning Bayesian networks have
been proposed via e.g. integer programming [21]. We consider a more gen-
eral class of causal graphs with latent confounders (unobserved variables)
and feedback (cyclic graph structures). These are required for accurately
representing real-world phenomena in e.g. biology [134]. Triantafillou and
Tsamardinos [151] previously use SAT solvers in a similar setting which
does not admit these feedback cycles. The first exact approach for this
problem setting was implemented via an ASP encoding [82], we use an

29
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equivalent MaxSAT encoding [25]. In Paper III we further improve on this
approach by developing problem-specific search techniques for the implicit
hitting set framework.

5.1 Conditional Independence in Causal Graphs

Paper III continues in the problem setting and formulation described by
Hyttinen et al. [82]. We consider causal graphs G = (V,E) where the set of
nodes V corresponds to a set of (observed) random variables and the edges
in E are pairs of nodes representing causal relations between nodes. An
edge can be directed (→) or bi-directed (←→). The tail of a directed edge
represents the cause. A bi-directed edge X←→Y represents the presence of
an unobserved common cause of X and Y such as a structure X←L→Y
where L 
∈ V .

We recall a well-known reachability condition for causal graphs known
as d-separation (dependence separation) [122, 149]. A walk in a causal
graph G is any sequence of consecutive edges, allowing repeats. A node
X on a walk is a collider if consecutive edges on the walk point into the
node, i.e. →X←, →X←→, ←→X←, or ←→X←→. A walk between X and Y
is d-connecting given a conditioning set S ⊆ V \ {X,Y } if every collider on
the walk is in S and every non-collider node on the walk is not in S. A pair
of nodes is d-separated given S if no d-connecting walk exists, otherwise
they are d-connected.

Example 5.1. Consider the following causal graph of 5 nodes.

Q

X Z Y

W

The sequence of nodes Q→X←→Z←W forms a walk in the graph. On
this walk, nodes X and Z are colliders.

In the graph X and W are d-connected given {Y } through the walk
X ←→ Z → Y ← Z ← W . On the other hand Y and Q are d-separated
given {W}.

We are interested in d-separation because under causal Markov and
faithfulness assumptions for G [126, p. 29–42] it is equivalent to statistical
independence between random variables. That is, nodes X and Y are
d-separated in G given S if and only if random variables X and Y are
independent given variables S in data generated by a system with causal
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structure G [145]. We use X ⊥⊥ Y | S to mean statistical indepedence
and d-separation, and X 
⊥⊥ Y | S to mean statistical dependence and
d-connectivity.

5.2 Causal Discovery as Constraint Optimization

In the causal discovery problem we consider a set of conditional indepen-
dence and dependence constraints K over V and a function w : K → N

which assigns weights, or costs, to (in)dependence constraints. Let G be
the set of possible causal structures for V . This causal discovery problem
can then be formulated [82] as computing

Ĝ ∈ argmin
G∈G

∑

k∈K
G �|=k

w(k).

That is, we wish to find a causal graph Ĝ which minimizes the weight of
(in)dependence constraints k not implied by (G 
|= k) the structure of Ĝ.

The (in)dependence constraints K and their weights w are derived from
data sampled from some underlying distribution. Constraints K are ob-
tained via statistical independence tests on the data. We test the depen-
dence or independence of each of

(
n
2

)
pairs of variables conditioned on each

of 2n−2 subsets of remaining variables for a total of
(
n
2

)
2n−2 (in)dependence

constraints. These tests can produce errors and the weight w(k) of a con-
straint k, obtained by local Bayesian model selection [82], can be seen as a
measure of the degree of confidence in k. Figure 5.1 illustrates this work-
flow as a whole. We focus on the final part of this process, solving the
MaxSAT-encoded (in)dependence constraints for the optimal graph struc-
ture.

X1 X2 X3

0.1 −0.34 0.8
0.22 −0.4 −0.1
...

...
...

DATA

⇒

k w(k)

X1 ⊥⊥ X3 3.29
X1 ⊥⊥ X3|X2 3.73
X2 
⊥⊥ X3 23.4

X2 
⊥⊥ X3|X1 21.2
X1 
⊥⊥ X2 15.8

X1 
⊥⊥ X2|X3 10.11

(IN)DEPENDENCIES

⇒
MAXSAT:

encoding
+

solving

⇒

X1

X2

X3

CAUSAL GRAPH

STRUCTURE

Figure 5.1: Phases of computing a causal graph structure from data [25].
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SAT Solver

D ∪ (K \H)

IP Solver

MCHS(C,w)

H

C ← C ∪ {c}
unsat

Input

w : K → ND,K

Output G

sat

Figure 5.2: The implicit hitting set algorithm of Dseptor.

5.3 Instantiating IHS for Causal Discovery

We translate instances of the causal discovery problem to MaxSAT follow-
ing earlier work of Hyttinen et al. [25, 82]. The independence and depen-
dence constraints K are represented as soft unit clauses with weight w(k).
The d-separation conditions D implied by each (in)dependence constraint
are encoded in CNF as hard clauses [25, 82].

We based our solver Dseptor on the IHS-based MaxSAT solver LMHS.
It was adapted to this domain by building domain-specific improvements
to speed up search on causal discovery instances. MiniSat [52] is used
as a core extractor and IBM CPLEX [84] is used as an optimizer for the
MCHS problems. A one-to-one relationship between the soft clauses and
the (in)dependence constraints of the causal structure discovery problem
means that cores identified by LMHS will naturally correspond to sets of
(in)dependence constraints that cannot simultaneously hold. Figure 5.2
relates the generic implicit hitting set algorithm to the causal discovery
setting.

Example 5.2. Consider the set of constraints with unit costs from
Paper III:

K = {X 
⊥⊥ Z | W ; Y 
⊥⊥ Z | W ; X ⊥⊥ Y | W ; X ⊥⊥ Y | Z,W ;

X 
⊥⊥ Z | Y,W ; Y 
⊥⊥ Z | X,W ; X 
⊥⊥ Y | W,Q; Y ⊥⊥ Q | W}.
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Dseptor first tries to satisfy the entire set of constraints K, and upon
finding it unsatisfiable will identify a core, for example

c1 = {X 
⊥⊥ Z | W ; Y 
⊥⊥ Z | W ;X ⊥⊥ Y | W ; X ⊥⊥ Y | Z,W}.

A minimum-cost hitting set for {c1} will then be computed. One such
set is H1 = {X 
⊥⊥ Z | W} with cost 1. Dseptor will then search for
a causal graph satisfying constraints K \H1. However, no such graph
exists, so another core

c2 = {X ⊥⊥ Y | W ; Y ⊥⊥ Q | W ; X 
⊥⊥ Y | W,Q},

is found. The minimum-cost hitting set for {c1, c2} is H2 = {X ⊥⊥ Y |
W}, which also has cost 1. There exists a causal graph satisfying the
constraints of K \ H2 so the SAT solver will find it and stop. This
solution (a truth assignment τ satisfying D ∪ (K \H2)) has cost 1 and
corresponds to the graph of Example 5.1. Here the core

c3 = {X 
⊥⊥ Z | Y,W ; Y 
⊥⊥ Z | X,W ; X ⊥⊥ Y | W ; X ⊥⊥ Y | Z,W}

is not needed for proving optimality.

5.4 Domain-Specific Improvements

The main contribution of Paper III is the addition of three domain specific
methods for speeding up search. While the LMHS solver is at the core of
Dseptor and the causal discovery problem is in essence translated to Max-
SAT, these domain-specific methods significantly improve upon the baseline
performance of LMHS by specializing the implicit hitting set approach to
the causal graph domain.

Domain-specific cores Seven domain-specific core patterns arising from
the d-connectivity conditions were identified. We list here the patterns over
three variables. The following are cores for any instantiation of variables
A,B,C and set of other variables S:

(i) {A ⊥⊥ C | S; A ⊥⊥ B | S; A 
⊥⊥ C | B,S}

(ii) {A 
⊥⊥ C | S; B 
⊥⊥ C | S; A ⊥⊥ B | S; A ⊥⊥ B | C, S}

(iii) {A 
⊥⊥ C | B,S; B 
⊥⊥ C | A,S; A ⊥⊥ B | S; A ⊥⊥ B | C, S}
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For example, pattern (i) can be applied in Example 5.2 to find core c2 by
substituting Y for A, Q for B, X for C, and {W} for S, thus eliminating
the SAT solver call required to identify the core. Proofs of correctness and
minimality for cores (i)–(iii) as well as four-variable patterns are listed in
the online appendix for Paper III [83].

Incremental core extraction On any iteration, rather than immedi-
ately trying to satisfy D and all constraints K \H, Dseptor incrementally
adds constraints one by one until unsatisfiability. This alone has several
benefits. The satisfiable formulas encountered before unsatisfiability yield
upper bounds which are valuable for the bounds-based hardening discussed
in the next paragraph. Considering a smaller set of constraints at each SAT
solver call will naturally lead to smaller cores which reduces time spent on
core minimization. A randomized order for adding constraints diversifies
the found cores, which benefits the hitting set computations. Similar ideas
have been explored for MaxSAT in e.g. the stratified approach of the WPM1
solver [9]. Dseptor implements a domain-specific refinement to incremental
core extraction in the form of a dynamic partial encoding. Although the
algorithm only tries to satisfy constraints not in H at each iteration, the
clauses of the CNF encoding of D related to constraints in H remain active.
The dynamic partial encoding explicitly disables the hard clauses related
to the constraints which the current iteration does not try to satisfy.

Bounds-based hardening Motivated by simultaneous work on reduced-
cost fixing for MaxSAT [16, 17] we used a type of lookahead procedure
similar to the variable fixing and probing techniques in IP solving [140]
to harden soft (in)dependence constraints during search. Given an upper
bound U from a previously found feasible solution τ and a constraint k
which is satisfied in that solution, we can solve the minimum-cost hitting
set problem assuming k is violated to give a conditional lower bound L¬k.
If L¬k > U , the soft constraint of k can be hardened since any solution
which does not satisfy k has a cost higher than τ . A looser but compu-
tationally less costly conditional lower bound can be obtained by instead
solving the LP relaxation of the hitting set problem. A domain-specific
extension of this technique conditions the lower bound not on a single in-
dependence constraint but on the existence of an edge in the causal graph.
If any edge e between nodes X and Y is present in the graph, all inde-
pendence constraints of the form X ⊥⊥ Y | S are falsified. A conditional
lower bound Le can then be computed by solving the hitting set IP (or
LP relaxation) assuming that all constraints X ⊥⊥ Y | S are violated. If
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Le > U , the problem can be simplified by enforcing the absence of e in the
CNF encoding.

5.5 Experimental Evaluation

We experimentally evaluated the Dseptor solver on both synthetic and
real-world data. Dseptor was compared against leading solvers for Max-
SAT (OpenWBO [111], MaxHS [43], LMHS [136], Maxino [7], MSCG [115],
WPM3 [10] and QMaxSAT [98]), ASP (Clingo [64]), and IP (CPLEX [84]).
An overview of the experiments is given in Figures 5.3 and 5.4. In both
cases Dseptor shows state-of-the-art performance, solving significantly more
instances than other methods.

Figure 5.3 additionally shows the effect of each search technique intro-
duced in Paper III. Each technique was individually disabled from Dseptor
for the tests. The domain-specific cores (w.o. cores), incremental core ex-
traction (w.o. incr), and bounds-based hardening (w.o. harden) each clearly
contribute to the performance of the solver. Domain-specific cores individ-
ually give the largest benefit in terms of instances solved.

As seen with other implicit hitting set algorithms, Dseptor also has
good anytime performance. The algorithm finds feasible solutions during
search and, as shown in Paper III, often finds an optimal solution very fast,
using most of the search time in proving optimality. After Dseptor, further
progress was made in a custom branch-and-bound solver [130] which used
many of the techniques introduced for this context in Paper III.
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Figure 5.3: Evaluating the performance of Dseptor and the impact of search
techniques.
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Figure 5.4: Performance of Dseptor with longer timeouts on larger, real-
world datasets.



Chapter 6

Abductive Reasoning

In this chapter we discuss the contribution of this thesis to optimization in
abductive reasoning, summarizing the work in Paper IV. Abductive reason-
ing, or abduction, is also known as inference to the best explanation [76].
Rather than deducing the logical consequence of some facts, abduction is a
kind of reasoning used to formulate an explanation, such that the facts are
a logical consequence of the explanation. In general many (possibly con-
tradicting) explanations may exist, and abductive procedures do not claim
to necessarily identify the true cause. Rather, the aim is to find e.g. the
simplest or most probable explanation [50].

The study of abductive reasoning is a fairly modern development, hav-
ing been formalized in the work of Peirce [61, 124] in the early 20th cen-
tury. There are various formalisms for abduction, including probabilis-
tic abduction, set-cover abduction, and logic-based abduction [125]. We
consider abduction problems in a propositional logic setting. Abductive
reasoning problems are encountered in a number of contexts including
diagnosis [59, 125], machine learning [87, 156], planning [60], law [143],
medicine [103], and natural language processing [79,119].

Many knowledge representation and reasoning problems, including ab-
duction, are known to belong to complexity classes beyond NP [53, 55, 58,
148]. More specifically the propositional abduction problem we consider
is ΣP

2 -hard [56]. In instantiating the implicit hitting set framework for
this task in Paper IV, we show the robustness of the approach for solving
optimization problems beyond NP in the polynomial hierarchy.

We begin with a formal definition of the propositional abduction prob-
lem and related concepts. We then present an instantiation of the generic
hitting set algorithm for propositional abduction. This instantiation uses
separate entailment and consistency checks in the core extractor to tackle
the ΣP

2 -hard optimization problem. We discuss our implementation of the

37
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AbHS algorithm as well as a refinement (AbHS+) which gives substantial
performance gains in practice. The chapter concludes with an overview of
an experimental evaluation of AbHS and a discussion of recent related work
on solving abduction problems and application of abduction solvers.

6.1 Propositional Abduction Problems

Formally, a propositional abduction problem instance P = (V,H,M, T, c)
is a tuple of sets of variables V , hypotheses H, manifestations (or obser-
vations) M , a theory T , and a cost function c : H → N. Here V is a
(finite) set of Boolean variables, H and M are sets of propositional formu-
las, and T is a propositional formula. We extend the domain of the cost
function to subsets of H by simply summing the costs of their elements
c(S) =

∑
s∈S c(s).

Similarly to our treatment of CNF formulas (in Chapter 2) we use H
(and S ⊆ H) to also refer to the conjunction of their elements. A subset
of hypotheses S ⊆ H is an explanation of P if T ∧S is both consistent and
entails M (denoted by T ∧ S |= M). This entailment holds if T ∧ S ∧ ¬M
is inconsistent (unsatisfiable). We denote the set of all explanations of P
with

Expl(P ) = {S ⊆ H | T ∧ S 
|= ⊥, T ∧ S |= M}
and the set of minimum-cost explanations (with regard to c) with

Explc(P ) = argmin
E∈Expl(P )

c(E).

The problem of checking whether an explanation exists is ΣP
2 -complete

(alternatively NPNP) for propositional theories [56], i.e., it can be decided
in nondeterministic polynomial time with access to an NP oracle. This
is in contrast to Chapter 4 where the decision problem (for MaxSAT) is
NP-complete.

A core of an abduction instance P is a set of hypotheses which is not a
subset of any explanation. That is, C ⊆ H is a core if there does not exist
any explanation S for which C ⊆ S ⊆ H. Unlike MaxSAT cores which are
unsatisfiable, an abduction core C can be consistent with the theory T .

6.2 Instantiating IHS for Abduction

In instantiating the implicit hitting set for propositional abduction we
make, without loss of generality, some assumptions on the form of the
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input. In the following, the theory T is a propositional formula in CNF
form and M and H are sets of literals (unit clauses). Given this restric-
tion, manifestations and hypotheses comprised of multiple clauses can be
represented by e.g. a group encoding [77].

Algorithm 2 presents AbHS, our instantiation of the implicit hitting
set algorithm for propositional abduction. AbHS first initializes an empty
set of cores K and an empty explanation candidate S. An initial SAT
solver call (Line 3) then checks that the entire set of hypotheses entails M ,
T ∧ H |= M , or in other words checks that T ∧ H ∧ ¬M is unsatisfiable.
The procedure then enters the main implicit hitting set loop, which consists
of two successive SAT solver invocations. The first (Line 6) ensures that
the candidate solution S entails the manifestations. The second (Line 10)
checks that S is consistent with the theory T . If either check is unsuccess-
ful, an appropriate core is added to K. If the first fails (T ∧ S 
|= M), a
core can be formed from the subset of hypotheses not satisfied by the truth
assignment τ . This is to say that a hypothesis not active in the violating
assignment τ must be enforced to entail M . If the second fails (T ∧ S is
not satisfiable), then since S is a minimal hitting set for K we add to K
a core requiring at least one hypothesis in H \ S. Before every iteration,
S is recomputed to be the minimum-cost hitting set of the set of cores
K. If S grows to the entire set of hypotheses H, we know from the ini-
tial check of Line 3 that there is no solution. If both the entailment and
consistency check are successful on any iteration of the algorithm, then S
is a minimum-cost explanation and the algorithm terminates. Figure 6.1
relates the structure of this algorithm to the implicit hitting set framework.

The AbHS+ variant also introduced in Paper IV departs somewhat from
the pure implicit hitting set framework. We observed that for small S, the
core H \ S added on Line 14 can be very large. This core is expressed as
an IP constraint given a Boolean variable xi for each hypothesis hi ∈ H as

∑

hi∈(H\S)
xi ≥ 1.

Given that S is by construction minimal (and thus no subset of it will be
considered on subsequent iterations), a more concise way of expressing the
same condition is the constraint

∑

hi∈S
xi < |S|

to indicate instead that at least one hypothesis in S cannot be included in
any explanation. As noted in [85], the inclusion of these constraints may
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Algorithm 2 An implicit hitting set algorithm for abduction.

1: procedure AbHS(V,H,M, T, c)
2: K ← ∅; S ← ∅
3: (sat , τ) ← SAT(T ∧H ∧ ¬M)
4: if sat then return “no solution”
5: while S 
= H do
6: (sat , τ) ← SAT(T ∧ S ∧ ¬M)
7: if sat then
8: K ← K ∪ {{h ∈ H | τ(h) = 0}} � T ∧ S 
|= M
9: else

10: (sat , τ) ← SAT(T ∧ S)
11: if sat then
12: return S
13: else
14: K ← K ∪ {{H \ S}} � T ∧ S |= ⊥
15: S ← MCHS(K, c)

16: return “no solution”

unsat
K ← K ∪ {C}

sat

unsat

SAT Solver

T ∧ S ∧ ¬M

T ∧ S

IP Solver

MCHS(K, c)

S

Input

T,M c : H → R+

Output S

sat

Figure 6.1: The structure of Algorithm 2.
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cause the IP to have no solutions and the loop of Algorithm 2 should be
modified to terminate in this case.

As an alternative to the implementation of AbHS using two SAT solver
calls per iteration, the IHS algorithm could be instantiated with a ΣP

2 -oracle
such as a quantified Boolean formula (QBF) solver. However, this approach
was found to perform poorly in practice with current QBF solvers [85].

6.3 Experimental Evaluation

In the absence of a standard benchmark set for propositional abduction
problems, a set of instances was generated from MaxSAT evaluation 2014
benchmark instances [11]. An abduction instance (V,H,M, T, c) was con-
structed from a MaxSAT instance (Fh, Fs, w) as follows. Soft clauses Fs

were used as hypotheses H, and hard clauses Fh as the theory T . From
an optimal solution to the MaxSAT instance, which satisfies soft clauses
F ′
s ⊂ Fs, a subset of literals entailed by F ′

s ∧ Fh is used as manifestations
M . Random subsets of 5, 10, and 15 literals were selected for each of the
547 instances, giving a total of 1641 abduction instances.

A prototype implementation of the AbHS algorithm (and AbHS+ vari-
ant) was tested against a disjunctive ASP encoding. An abduction instance
is encoded in ASP by a standard guess-and-check technique in which consis-
tency is checked with simple ASP constraints. Checking entailment is more
involved, using a so-called saturation technique with disjunctive rules [57].
For details, the ASP encoding is available on the AbHS solver website [138].
We used Clingo 4.5.3 [64] as the ASP solver. The core-guided algorithm
of Clingo was also tested, but it solved fewer instances than the default
branch-and-bound algorithm for all values of |M |. Results of the compari-
son are summarized in Figure 6.2.

Each algorithm was run with a per-instance timeout of 1800 seconds.
Instances with a larger number of manifestations were clearly harder for
each algorithm. While the ASP approach solved more instances than AbHS
with |M | = 10 and |M | = 15, the AbHS+ variant clearly dominated both
in each case.

6.4 Related Work

Prior work on propositional abduction problems suggested similar app-
roaches which are also based on computing minimal hitting sets [139].
However, these algorithms focus on enumeration of all explanations, and
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AbHS |M|=15 104
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Figure 6.2: Comparison of propositional abduction solvers grouped by size
of manifestation set M .

the implementations have not been empirically tested to the best of our
knowledge.

The implicit hitting set approach for abduction was further developed
in [85], where the check for consistency is integrated into the hitting set
solver. This was done by substituting the IP solver of AbHS with a MaxSAT
solver and adding the relevant theory constraints. As explained in [85], this
has the potential to result in an exponential reduction in the number of
SAT solver calls required. In practice the new solver was shown to have
better performance on unweighted instances in terms of number of instances
solved.

Recently, this approach was applied in [87] for computing minimal ex-
planations for neural networks. The task of determining an explanation for
the predicted label of a machine learning model for a given input can be
seen as an abductive reasoning task. Specifically, in [87] a propositional
abduction procedure is used to search for a cardinality-minimal set of fea-
tures of an input, which together with the parameters and structure of the
neural network entail the predicted label.



Chapter 7

Answer Set Optimization

This chapter summarizes the contributions of this thesis to optimization in
answer set programming. Answer set programming (ASP) [70, 104, 118] is
a relatively recent declarative programming paradigm. It borrows much of
the syntax of traditional logic programming (e.g. Prolog [146]) but differs in
its use of the stable model semantics [69] and negation as failure [39]. Today,
various solvers for ASP are available. Examples include smodels [144],
DLV [100], Wasp [6], and clasp [64]. Most early optimization procedures
for ASP were branch-and-bound algorithms but more recently core-guided
solvers [6,8] have been developed. These are based on algorithms similar to
those used in MaxSAT [114]. Optimization with answer set programming
sees a variety of applications including solving problems in robotics [141],
vehicle routing [67], and scheduling [1, 5, 20]. In Paper V we develop and
evaluate ASP-HS, a new answer set optimization procedure based on the
implicit hitting set paradigm.

We begin with the necessary definitions of answer set programming and
optimization. Our focus is on ground (variable-free) programs with disjunc-
tive rules. We discuss stable models, Clark’s completion, and optimization
over soft literals in this context. We then introduce our instantiation of the
implicit hitting set algorithm for answer set programming. The main con-
tribution of the chapter, the description and evaluation of various search
techniques developed for ASP-HS, follows. In particular, we make an in-
teresting concrete observation on the impact of weight precision on solving
times.

43
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7.1 Answer Set Programs

Answer set programs are written using an extended logic programming
notation. Programs consist of atoms and inference rules. Atoms represent
a claim about the world which may be true or false. Inference rules encode
the relationships between these claims. A solution is a set of true atoms
called a stable model [144].

The ASP language specification allows for variables and various types
of syntactic shortcuts in the form of choice rules and aggregate relations
(including cardinality constraints) [33]. These aggregates can be expressed
in terms of simpler rules. Variables are often completely grounded (in-
stantiated) away before solving [68,150] (although so-called lazy grounding
schemes also exist [99, 120]).

We target ground programs over a set of propositional atoms A. A
literal l of an atom p ∈ A can be positive p or negative ∼p. Here ∼ denotes
default negation or negation-as-failure [39], not classical negation ¬. An
interpretation I (analogous to a SAT model) is a subset of A. Atoms in
I are true and atoms in A \ I are false. For our purposes an answer set
program Π is a set of rules of the form

p1 ∨ · · · ∨ pm ← l1 ∧ · · · ∧ ln

where p1, . . . , pm are atoms and l1, . . . , ln literals of A. If m > 1 the rule
is disjunctive. The inclusion of disjunctive rules pushes the complexity
of the decision problem of answer set programming to the second level of
the polynomial hierarchy [54]. For a rule r the atoms p1, . . . , pm are the
head of the rule, H(r), and the literals l1, . . . , ln are the body B(r). We
use B(r)+ and B(r)− to denote the atoms occurring in the positive and
negative literals of the body.

The semantics of these rules are such that if the conditions of the body
hold, then at least one of the atoms in the head must be included in a
solution. More formally I is a model of a rule r, I |= r, if H(r) ∩ I 
= ∅
whenever B(r)+ ⊆ I and B(r)− ∩ I = ∅. I is a model of a program Π,
I |= Π, if I is a model of every rule r ∈ Π. A rule with an empty body

p1 ∨ · · · ∨ pm ←
is commonly known as a fact, which is essentially a clause (p1 ∨ · · · ∨ pm).
A rule with an empty head

← l1 ∧ · · · ∧ ln

is an integrity constraint which corresponds to a clause (¬l1 ∨ · · · ∨¬ln), as
the empty head cannot be satisfied.
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Stable models (or answer sets) [69] formalize the notion that the in-
clusion of every element in the solution must be justified by the rules of
the program. They are defined using a reduct ΠI of the program Π with
respect to an interpretation I. The reduct ΠI is obtained by

1. first removing each rule r such that B(r)− ∩ I 
= ∅,
2. then removing negative literals in the remaining rule bodies.

Intuitively, we can see ΠI as the set of potentially applicable inference rules
given I. Step 1 removes from Π inference rules that cannot be applied
because they contain the negation of an atom included in I. Step 2 then
removes the remaining negative literals because they are trivially satisfied
due to not being included in I. An interpretation I is a stable model of Π
if I |= Π and there is no J ⊂ I such that J |= ΠI . A program Π is coherent
if it has a stable model and incoherent otherwise.

Example 7.1. Consider a disjunctive answer set program Π similar
to the example of Paper V with rules

a ∨ c ← ∼b ∧ ∼d, a ← c ∧ ∼d, b ∨ d ← ∼c, c ← a ∧ ∼b,
← sa ∧ ∼a, ← sb ∧ ∼b, ← sc ∧ ∼c, ← sd ∧ ∼d,

sa ∨ sb ∨ sc ∨ sd ← .

The program Π has stable models I1 = {b, sb}, I2 = {d, sd}, I3 =
{c, a, sa}, and I4 = {c, a, sc}. The reduct ΠI1 is

a ← c, b ∨ d ← , ← sa, ← sc, ← sd,

sa ∨ sb ∨ sc ∨ sd ←
and one can check that no proper subset of I1 is a model of ΠI1 , hence
I1 is indeed a stable model.

We use the Clark’s completion [39] as a tool for reasoning about answer
set programs. In the non-disjunctive case the completion of a program
Π is a propositional logic formula in which we interpret rules r of Π as
implications B(r) → H(r) and add

p →
∨

r:p∈H(r)

B(r)

for each atom p ∈ A. These expressions state that if p is true, then the body
of a rule r with p as its head is satisfied. The solutions of the completion
correspond to supported models of Π, a superset of the stable models of



46 7 Answer Set Optimization

Π. Extensions of the Clark’s completion to disjunctive programs have also
been formulated [4].

7.2 Instantiating IHS for ASP

A program Π may have many stable models. We denote by SM(Π) the
set of all stable models of Π. We define optimization over these stable
models in terms of soft atoms. Alternatively we could optimize over weak
constraints, similarly to how optimization for MaxSAT could be defined
either over labels or over soft clauses in Chapter 4. Let W be a finite set
of soft atoms and let weight : W → N assign a positive integer weight
weight(p) to each soft atom. The cost of an interpretation I is the weight
of soft atoms not included in it,

W(I) =
∑

p∈W\I
weight(p).

An interpretation Î is an optimal stable model if

Î ∈ argmin
I∈SM(Π)

(W(I)).

Example 7.2. Continuing Example 7.1, suppose that the set of soft
atoms W is {sa, sb, sc, sd} and weight assigns weights {1, 2, 4, 8}, re-
spectively, to the soft atoms. I2 is an optimal stable model of Π as the
stable models I1, I2, I3, and I4 have cost 13, 7, 14, and 11, respectively.

The development of core-guided solvers for ASP [6, 8] opened the door
for the implementation of an implicit hitting set based optimization pro-
cedure. Cores of answer set programs are defined in a similar manner to
MaxSAT cores in Chapter 4. A core of a program Π is a subset of soft
atoms κ ⊆ W that cannot be simultaneously included in any stable model
of Π. That is, if κ ⊆ I then I 
∈ SM(Π).

Example 7.3. Continuing Example 7.2, Π has no stable models with
more than one soft atom of W so any pair of atoms of W, e.g. {sa, sb},
is a core.

Using a core-guided ASP solver as an unsatisfiable core extractor, it is
then straightforward to instantiate the IHS framework for ASP optimiza-
tion. This allows us to find a core with respect to a set of soft literals as
assumptions. When solving Π w.r.t. a set S, we will either find I ∈ SM(Π)
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ASP Solver

Π w.r.t. W \H
IP Solver

MCHS(C,W)

H

C ← C ∪ {κ}
incoherent

Input

W,weightΠ,W

Output I

coherent

Figure 7.1: The implicit hitting set algorithm for ASP.

such that S ⊆ I or a core κ ⊆ S if no such stable model exists. Figure 7.1
shows the familiar implicit hitting set loop in the context of ASP. That this
process yields an optimal stable model follows from Theorem 3.1.

7.3 Search Techniques

We implemented the implicit hitting set algorithm for ASP in our solver,
ASP-HS. The solver incorporates many search techniques on top of the
implicit hitting set framework. Some of these are known from implicit
hitting set algorithms in other domains, while others are novel for the ASP
instantiation. The former category includes core minimization, disjoint core
computations, and reduced cost fixing while the latter consists of techniques
exploiting the Clark’s completion of the program.

Core minimization We use a simple destructive algorithm for core min-
imization which was shown to be effective in MaxHS [45] and LMHS [135].
In short, a subset-minimal core is computed by iteratively discarding un-
necessary elements from a found core κ. We imposed resource constraints
on the minimization process which prevent it from consuming more than a
fixed fraction of the total search time.
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Disjoint cores Disjoint cores are used in the same manner as in the
LMHS MaxSAT solver [135]. With the purpose of increasing core diversity,
ASP-HS computes a disjoint set of cores at each iteration of the implicit
hitting set loop. The disjoint core computation finds a feasible solution at
each iteration. These feasible solutions give upper bounds which can be
exploited by reduced cost fixing.

Reduced cost fixing The IP solving technique of reduced-cost fixing is
implemented following its recent application for MaxSAT [16,17]. At each
iteration, an LP relaxation of the problem is solved to yield reduced-cost
values for the optimization variables. On an intuitive level for ASP (with
respect to an optimal solution to the LP relaxation), the reduced cost of
an atom p not in the answer set represents the amount by which the cost
of an optimal solution would increase if we required p to be in an answer
set. Similarly to the bounds-based hardening in Section 5.4, this gives us
a conditional lower bound for answer sets including p, which can make it
possible to simplify the problem by fixing the value of its respective soft
literal during search.

Clark’s completion We developed methods that leverage the Clark’s
completion specifically for ASP-HS. The Clark’s completion (recall Sec-
tion 7.1) is a relaxation of the answer set program, and thus we could solve
it as an initial step to obtain a lower bound on the cost of optimal solutions.
However, solving the completion can be too time-consuming in practice and
we solve an LP relaxation of the completion instead, as explained in more
detail in Paper V. Computing an initial lower bound can benefit search by
enabling reduced cost fixing or even cause the early termination of the algo-
rithm if it matches an upper bound obtained from minimization or disjoint
cores.

Non-core constraints We can identify rules consisting only of soft liter-
als in the answer set program and pass these to the optimizer as additional
information. Our motivation is similar to the use of non-core constraints
in MaxHS for MaxSAT [45]. Unlike the case of MaxSAT, we look for these
constraints in the Clark’s completion of the answer set program. If any con-
straint in the completion of Π contains only atoms in W, it can be used by
the IP solver to refine the hitting sets produced and thus potentially reduce
the number of iterations required for the IHS algorithm to terminate.
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7.4 Experimental Evaluation

An experimental evaluation of ASP-HS and other solvers for ASP optimiza-
tion was performed in Paper V. The Wasp 2.0 ASP solver [6] was used as
the unsatisfiable core extractor and IBM CPLEX 12.7 [84] as the optimizer.
Wasp supports core extraction for disjunctive programs [3], extending the
reach of ASP-HS to ΣP

2 -hard [54,57] optimization problems. We gathered a
benchmark set of ASP optimization instances from the 2015 and 2017 ASP
Competitions [65,66], the Asparagus instance repository [89], and instances
of a causal structure discovery problem [82]. To provide a more balanced
comparison, 20 instances were chosen for each instance family as in the
ASP Competitions. For instance families not from the ASP Competitions,
a set of 20 instances was chosen randomly. In total 16 different instance
families (11 weighted and 5 unweighted) were considered, for a total of 320
instances.

Figure 7.2 shows the impact of individual search techniques on the per-
formance of ASP-HS on (W)eighted and (U)nweighted instances. Each
search technique considered in Section 7.3 is disabled one at a time (e.g.
“No disjoint”) to show its contribution to the number of instances solved
by ASP-HS. The largest contributions to the number of instances solved
are observed on weighted instances, where core minimization and disjoint
cores have the greatest impact. The ASP-specific non-core constraints and
Clark’s completion lower bounds have a smaller, but noticeable, impact for
both unweighted and weighted instances.

Figure 7.3 compares ASP-HS to Wasp 2.0 [6] and the core-guided (usc)
and branch-and-bound (bb) algorithms of Clasp 3.3.2 [8,64]. Compared to
the core-guided approaches of Wasp and Clasp-usc, ASP-HS is very compet-
itive on weighted instances, while on unweighted instances it outperforms
the branch-and-bound approach of Clasp-bb. A more detailed summary of
results by instance family is given in Paper V.

The strength of the implicit hitting set approach is seen in particular
in the weighted instances. A more in-depth look at the impact of weight
precision is given by Table 7.1 where we take the Bayes instance family as an
example. By chance, we noticed that the weight precision of these instances
had been artificially reduced by dividing all weights by 1000. This gave a
natural way of investigating the impact of weight precision. We varied the
value of the divisor from 1000 to 1, to create instance families Bayes1000,
Bayes100, Bayes10, and Bayes1. That is, Bayes1 is the instance set with
maximum available precision and Bayes1000 is the unmodified instance set.
We see a sharp decline in the performance of Wasp as precision increases
while the performance of ASP-HS is fairly consistent.
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ASP-HS Wasp

Family solved time solved time

Bayes1 (60) 23 73881.28 5 99335.61
Bayes10 (60) 23 73273.87 6 97480.60
Bayes100 (60) 23 72843.50 12 89454.11
Bayes1000 (60) 27 64406.41 35 51484.31

Total 96 284405.06 58 337754.63

Table 7.1: Impact of weight precision on the Bayes instance family.



Chapter 8

Conclusion

This thesis contributes practical applications of implicit hitting set algo-
rithms to a number of constraint optimization settings. We instantiated
the implicit hitting set algorithm for MaxSAT (through labeled CNF for-
mulas), causal structure discovery, propositional abduction, and answer set
optimization. We released an open-source implementation of each algo-
rithm and performed empirical evaluations of each implementation to show
that they improve or complement the state of the art.

Further work on implicit hitting set algorithms will benefit from deeper
insight into how to compute cores and minimum-cost hitting sets for the
task. Many applications of the implicit hitting set algorithm would bene-
fit from developing the incremental use of SAT solvers for core extraction,
such as recent work on using assumptions [78]. Similarly further develop-
ment of core extraction procedures for e.g. quantified satisfiability would
likely improve implicit hitting set algorithms for problems further up the
polynomial hierarchy. Implementations of implicit hitting set algorithms
commonly use IP or MaxSAT solvers to tackle the sequences of minimum-
cost hitting set problems. Their efficient iterative or incremental use is an
important consideration. While the choice of core extractor is often dic-
tated by the application, there is more freedom in how to solve the hitting
set problems. Algorithms specifically targeted towards incrementally solv-
ing instances of minimum-cost hitting set problems have the potential to
benefit nearly all instantiations of implicit hitting set algorithms.

We expect the implicit hitting set approach to give more opportunities
for parallelization than e.g. purely SAT-based algorithms, as SAT solvers
have proven challenging to parallelize [19,75]. In addition to parallelization
of the IP solver, cores can be extracted in a parallel or distributed man-
ner. Due to the sequential nature of the problem it remains a challenge to
efficiently put together the results of parallel computations.

51
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Following the application of reduced-cost fixing techniques [16, 17] to
implicit hitting set algorithms, and given the wealth of literature on solving
IP problems, it seems natural to ask what other IP techniques could be
successfully applied to implicit hitting set algorithms. The importance of
core diversity for implicit hitting set algorithms has long been noted, but
has yet to be formally characterized and justified. This could yield insights
into how to guide the search for cores.

The success of Dseptor in specializing the implicit hitting set approach
to a specific problem domain suggests that a similar approach could be
worthwhile to investigate for other problems as well. Similar ideas of IHS-
specific encodings and domain-specific cores might likewise advance the
state of the art for other problems where efficient core extractors exist.
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S. Kaski. Optimal neighborhood preserving visualization by maxi-
mum satisfiability. In C. E. Brodley and P. Stone, editors, Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
pages 1694–1700. AAAI Press, 2014.

[33] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Kren-
nwallner, N. Leone, F. Ricca, and T. Schaub. ASP-Core-2: Input
language format. ASP Standardization Working Group, 2015.

[34] K. Chandrasekaran, R. M. Karp, E. Moreno-Centeno, and S. Vem-
pala. Algorithms for implicit hitting set problems. In D. Randall,
editor, Proceedings of the Twenty-Second Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 614–629. SIAM, 2011.

[35] J. W. Chinneck and E. W. Dravnieks. Locating minimal infeasible
constraint sets in linear programs. ORSA Journal on Computing,
3(2):157–168, 1991.
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[81] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004.

[82] A. Hyttinen, F. Eberhardt, and M. Järvisalo. Constraint-based causal
discovery: Conflict resolution with answer set programming. In N. L.
Zhang and J. Tian, editors, Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, pages 340–349. AUAI Press,
2014.

[83] A. Hyttinen, P. Saikko, and M. Järvisalo. A core-guided
approach to learning optimal causal graphs: Paper sup-
plement. https://www.cs.helsinki.fi/group/coreo/dseptor/

ijcai17-appendix.pdf, 2017. Accessed: 2019-09-06.

[84] IBM. ILOG CPLEX Optimization Studio. www.cplex.com. Accessed:
2019-09-06.

[85] A. Ignatiev, A. Morgado, and J. Marques-Silva. Propositional abduc-
tion with implicit hitting sets. In G. A. Kaminka, M. Fox, P. Bou-
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